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Abstract. This paper seeks to analyze the basics of equilibria in Fisher Mar-
ket Games involving linear and Leontief utility functions. In particular, the

analysis begins with preliminary definitions of the game at hand, then investi-

gates a popular convex program (Eisenberg-Gale) in the linear utility setting,
and finally examines the payoffs of players in the Leontief utility setting.
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1. Preliminaries

We first lay out some preliminary definitions.

Definition 1.1. We define a “Fisher Market” as a set N = [n] buyers and a set
M = [m] of divisible goods, such that each buyer has an initial budget Bi > 0 and
utility function ui : [0, 1]

m → R (i.e. utility per unit amount), and we assume unit
supply of each good and unit total budget

∑n
i=1 Bi = 1.

Definition 1.2. We will consider utility functions belonging to the “Constant
Elasticity of Substitution” family, i.e. functions of the form

ui(xi) =

(
m∑
j=1

aijx
ρ
ij

)1/ρ

such that ρ ̸= 0, ρ ≤ 1. In particular, the “Leontief” utility function is

ui(xi) = min
j∈[m]

{xij/aij}

The “Cobb-Douglas” utility function is

ui(xi) =
∏

j∈[m]

x
aij

ij

Finally, the linear utility function is

ui(xi) = ⟨ai,xi⟩ =
∑
j∈[m]

aijxij
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where “valuation vector” ai = (aij)j∈[m] is a parameter of the utility function.

Definition 1.3. We define a “market equilibrium” as a tuple (p,x) where p =
(p1, ..., pm) is a vector of prices and x = (x1, ...,xn) ∈ Rm×n an allocation of the m
items such that the following holds. For all i ∈ [n], xi maximizes ui subject to the
budget constraint ⟨xi,p⟩ ≤ Bi (hence equality is satisfied), and for all items with
pj > 0 the market is cleared, i.e.

n∑
i=1

xij = 1

Definition 1.4. Given a set of items [m] and agents [n] with budgets Bi, a “Fisher
Market Game” is defined by the following. Each agent i’s strategy space consists
of possible reported valuations si: Si = {si | si ∈ Rm

≥0}. If x(s) = (x1(s), ...,x1(s))

denotes the market allocation for strategy profile s, then for all i ∈ [n], agent i has
utility ui(xi(s)) =: ui(s) for short.

Definition 1.5. We say that an agent i “can secure a payoff of α” at strategy
(si, s−i) ∈ S if there is an ϵ > 0 and si ∈ Si such that

||s′−i − s−i||2 < ϵ ⇒ ui(si, s
′
−i) ≥ α

2. Linear Utilities

Definition 2.1. The Eisenberg-Gale convex program for equilibrium computation
is to maximize

n∑
i=1

Bi ln(ui(xi))

subject to the constraints

xij ≥ 0, ui =

(
m∑
j=1

aijx
ρ
ij

)1/ρ

∀i ∈ [n],∀j ∈ [m]

n∑
i=1

xij ≤ 1 ∀j ∈ [m]

Note that for the case of linear utility functions, the feasible set is bounded by
linear inequalities and we are maximizing a summation of concave functions of
linear maps, all of which preserve concavity, the objective is also concave.

Theorem 2.2. The Eisenberg-Gale convex program yields a market equilibrium for
linear utility-based Fisher markets.

Proof. We set the Lagrange multipliers of the program to be the prices themselves.
That is, our Lagrangian relaxation is the following:

min
p

max
x≥0

L(x,p) = min
p

max
x≥0

n∑
i=1

Bi ln⟨ai,xi⟩+
m∑
j=1

pj

(
1−

n∑
i=1

xij

)

= min
p

max
x≥0

n∑
i=1

Bi ln⟨ai,xi⟩+
m∑
j=1

pj −
n∑

i=1

⟨xi,p⟩
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hence optimality is attained when

pj > 0 ⇒ 0 =
∂L

∂pj
=

n∑
i=1

xij − 1

and

(2.3) xij > 0 ⇒ 0 =
∂L

∂xij
= Bi

aij
⟨ai,xi⟩

− pj ⇒
Bi

⟨ai,xi⟩
=

pj
aij

and where the final equality is replaced with “≤” in general, since the right hand
side could diverge to infinity for xij = 0 (agent i’s valuation on item j could be
close to zero). Thus, for xij > 0 and some different item j′ ∈ [m], we have

pj
aij

=
Bi

⟨ai,xi⟩
=

Bi

ui(xi)
≤ pj′

aij′
⇐⇒ aij′

pj′
≤ aij

pj

That is, the utility per price of any item that agent i is allocated is at least as
good as that of any other item (all agents only purchase optimal items). Finally,
by (1.13) we may sum over the items j ∈ [m] as

⟨xi,p⟩ =
m∑
j=1

xijpj =

m∑
j=1

xij
Biaij
⟨ai,xi⟩

= Bi

so that an equilibrium exists in the Fisher market where participants only purchase
optimal items and spend the entirety of their budgets Bi, as the feasible set is
non-empty and the objective is concave. □

Remark 2.4. Note that the solution above is Pareto optimal since any alternative
allocation has a lesser

∑n
i=1 Bi ln⟨ai,xi⟩ so that at least one of the terms in the

summation has decreased, hence at least one player is worse off.

Corollary 2.5. A Fisher market game with linear utilities has a symmetric, pure
Nash equilibrium where the payoffs are identical to the payoffs obtained from truthful
play.

Theorem 2.6. The Fisher market game with linear utilities has a Price of Anarchy
that is O(n).

Proof. We normalize the valuation vectors so that
∑m

j=1 aij = δ for all i ∈ [n].
Then, if each agent i assigns value only to its optimal item, the agent can guarantee
payoff

ui ≥
Bia

max
i∑n

k=1 Bk
=

amax
i

n

We then have that the Price of Anarchy is

PoA =
maxs∈S welf(s)

mins∈Eq. welf(s)
≤

∑n
i=1 Bia

max
i

1
n

∑n
i=1 Biamax

i

= n

□

Remark 2.7. Please note that in [2] the “PoA” refers to 1/PoA as we have defined
it here. This caused a great deal of trouble for the author.

Theorem 2.8. The Fisher market game with linear utilities has a Price of Anarchy
that is Ω(

√
n).
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Proof. Consider a set of n = m2 +m agents and m items such that Bi = 1 for all
i ∈ [m2 + m]. For i ∈ [m], define valuation vectors ai = (0, ..., 0, 1, 0, ..., 0) where
the 1 is in the ith spot, and for i ∈ {m + 1, ...,m2 + m} define valuation vectors
ai = (1/m, ..., 1/m). The optimality conditions of the EG program then guarantee
that, for i ∈ [m]

Bi

⟨ai,xi⟩
=

pi
aii

⇒ 1

xii
=

pi
1

⇒ 1

pi
= xii

and for i ∈ {m+ 1, ...,m2 +m},

1∑m
ℓ=1 aiℓxiℓ

=
pj
aij

⇒ m∑m
ℓ=1 xiℓ

= mpj ⇒
m∑
ℓ=1

xiℓ =
1

pj

so that all pj =: p must be the same. Then, the last EG optimality condition is

1 =

n∑
i=1

xij ⇒
m2 +m

p
=

m+m2∑
i=1

m∑
j=1

xij =

m∑
j=1

1 = m

⇒ pj = p = m+ 1

and so xii = 1
m+1 for all i ∈ [m], xij = 1

m2+m for i ∈ {m + 1, ...,m2 + m}, and
all other xij are zero. Thus, a market equilibrium under truthful valuations would

yield social welfare m
m+1 +

m2

m(m+1) =
2m
m+1 . Since giving unit (total) amount of item

i to agent i for i ∈ [m − 1] yields social welfare at least m − 1, the optimal social
welfare is at least m − 1. By Corollary 1.15 there exists a Nash equilibrium with
social welfare 2m/(m+ 1), hence the Price of Anarchy is

1/PoA ≤ 2m

(m− 1)(m+ 1)

in a scenario with a maximum welfare at equilibrium that is equal to its minimum

welfare at equilibrium. We have then PoA ≥ (m+1)(m−2)
2m so that the quantity is

Ω(m), or Ω(
√
n). □

3. Leontief Utilities

Lemma 3.1. If a pair of strategies (s1, s2) is a pure Nash equilibrium of the Fisher
market game with two agents and Leontief utilities, the utilities satisfy

ui(s1, s2) ≤ Bi/a
max
i

Lemma 3.2. In a two-player Leontief-based Fisher market game, the uniform
strategies ensure player 1 gets u1 ≥ B1/a

max
1 .

Theorem 3.3. Uniform strategies are an equilibria for the two-player Fisher mar-
ket game with Leontief utilities, and the utilities are

u1 =
B1

maxj∈[m] a1j
, u2 =

B2

maxj∈[m] a2j

Proof. For every agent i ∈ [n] we define

amax
i := max

j∈[m]
aij , amin

i := min
j∈[m]

aij

smax
i := max

j∈[m]
sij , smin

i := min
j∈[m]

sij
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If we fix the strategy s2 of agent 2, then the best response of agent 1 would be to
request exactly what is available, i.e.

s1 = (s1j)j∈[m], s1j = 1− s2j
smax
2

B2

which yields utility

u1(s1, s2) = min
j∈[m]

1− s2j
smax
2

B2

a1j

and where, for all items j ∈ [m], agent 2 is allocated

x2j =
s2j
smax
2

B2

with utility

u′
2(s1, s2) = B2/s

max
2

Then, since
∑m

j=1 pj =
∑n

i=1 Bi = 1,

(3.4) u′
i(s1, s2) =

Bi∑m
j=1 pjsij

,
Bi

smax
i

≤ u′
i(s1, s2) ≤

Bi

smin
i

Then, if either agent does not recieve utility u′
i(s1, s2) = Bi/s

max
i , one of the agents

increases their allocation by following the best response strategy above. Thus, by
Lemma 1.14, 1.15 and equation 1.17, the uniform strategies yield a Nash equilibrium
with ui = Bi/a

max
i . □

Theorem 3.5. The Fisher market game with Leontief utilities has a Price of An-
archy that is O(n).

Proof. We first note that optimizing allocation in Leontief utility-based Fisher mar-
kets involves xij/aij equal across all goods j for a specific agent i (else there is
allocation that is going to waste, since equal allocation per requirement yields the
same utility). Thus,

xij = aijui ⇒ Bi =

m∑
j=1

xijpj = ui

m∑
j=1

aijpj

We then have

ui =
Bi∑m

j=1 pjaij
≥ Bi∑m

j=1 pja
max
i

=
Bi∑n

k=1 Bkamax
i

since there is unit supply of every item and an equivalent net budget. Moreover,
each player gets at most unit amount of any item hence social welfare is bounded
as

n∑
i=1

ui(xi) ≤
n∑

i=1

ui(1) =

n∑
i=1

1

amax
i

Then, the Price of Anarchy is at most∑n
ℓ=1 1/a

max
ℓ∑n

i=1(Bi/
∑n

k=1 Bkamax
i )

so that under the assumption of delta normalization, i.e amax
i Bi = δ, we have that

PoA ≤
(1/δ)

∑n
ℓ=1 Bℓ∑n

i=1 Bi/(
∑n

k=1 Bk(δ/Bi))
=

(
∑n

k=1 Bk)
2∑n

i=1 B
2
i
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so that by Holder’s Inequality,

= n
(
∑n

k=1 Bk)
2

(
∑n

i=1 B
2
i )(
∑n

i=1 1
2)

≤ n
(
∑n

k=1 Bk)
2

(
∑n

i=1 Bi · 1)2
= n

Hence, the Price of Anarchy is O(n). □
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