FISHER MARKETS WITH LINEAR AND LEONTIEF UTILITIES

LUCAS TUCKER

ABSTRACT. This paper seeks to analyze the basics of equilibria in Fisher Mar-
ket Games involving linear and Leontief utility functions. In particular, the
analysis begins with preliminary definitions of the game at hand, then investi-
gates a popular convex program (Eisenberg-Gale) in the linear utility setting,
and finally examines the payoffs of players in the Leontief utility setting.
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1. PRELIMINARIES
We first lay out some preliminary definitions.

Definition 1.1. We define a “Fisher Market” as a set N = [n] buyers and a set
M = [m)] of divisible goods, such that each buyer has an initial budget B; > 0 and
utility function w; : [0,1]™ — R (i.e. utility per unit amount), and we assume unit
supply of each good and unit total budget Y . | B; = 1.

Definition 1.2. We will consider utility functions belonging to the “Constant
Elasticity of Substitution” family, i.e. functions of the form

m 1/p
ui(x;) = <Z aiﬂfj)
j=1
such that p # 0, p < 1. In particular, the “Leontief” utility function is
wi(x;) = min {x;;/a;}
J€lm]
The “Cobb-Douglas” utility function is

w;(x;) = H x?]J
j€[m]
Finally, the linear utility function is
ui(X;) = <az',Xi> = Z A5 L5

J€[m]
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where “valuation vector” a; = (a;;);je[m) is a parameter of the utility function.

Definition 1.3. We define a “market equilibrium” as a tuple (p,x) where p =
(p1, -, Pm) 1s a vector of prices and x = (x1, ...,X,) € R™*™ an allocation of the m
items such that the following holds. For all i € [n], x; maximizes u; subject to the
budget constraint (x;,p) < B; (hence equality is satisfied), and for all items with
p; > 0 the market is cleared, i.e.

n
E xij =1
i=1

Definition 1.4. Given a set of items [m] and agents [n] with budgets B;, a “Fisher
Market Game” is defined by the following. Each agent ¢’s strategy space consists
of possible reported valuations s;: S; = {s; |s; € RZ,}. If x(s) = (x1(s), ..., x1(s))
denotes the market allocation for strategy profile s, then for all i € [n], agent ¢ has
utility w;(x;(s)) =: u;(s) for short.

Definition 1.5. We say that an agent ¢ “can secure a payoff of o” at strategy
(siys—;) € S if there is an € > 0 and §; € S; such that

! j—
—1i

l|s s_illa < € = u;(si,s;) > a

2. LINEAR UTILITIES

Definition 2.1. The Eisenberg-Gale convex program for equilibrium computation
is to maximize

Z B; In(u;(x;))

subject to the constraints

m 1/p
zi; >0, u; = <Zaijxfj> Vi € [n],Vj € [m]
j=1

n

Zﬂ%j <1Vje[m]

i=1
Note that for the case of linear utility functions, the feasible set is bounded by
linear inequalities and we are maximizing a summation of concave functions of
linear maps, all of which preserve concavity, the objective is also concave.

Theorem 2.2. The Eisenberg-Gale convex program yields a market equilibrium for
linear utility-based Fisher markets.

Proof. We set the Lagrange multipliers of the program to be the prices themselves.
That is, our Lagrangian relaxation is the following:

n

m n
mgnr}?gé(L(x, p) = mgnr)xclgéq - B;In{a;,x;) + z;pj (1 - lew>
j= i=

=1

n

= m}?}nIBgé(ZBZ 11’1<ai,X7;> + ij — Z<X7;, p)

i=1 j=1 i=1
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hence optimality is attained when
oL &
i>0=0=-—= Ty — 1
p] 8pJ ; )

and
oL agj B; ;
i —pj = 71 — &
<au Xz> Aij
and where the final equality is replaced with “<” in general, since the right hand

side could diverge to infinity for z;; = 0 (agent i’s valuation on item j could be
close to zero). Thus, for z;; > 0 and some different item j’ € [m], we have

2.3 z;; >0=0= = B;
(23) / Oz (@i, x;)

Py _ B B o

< %

Qjj B (ai,x;) B wi(X;) ~ Py Pj
That is, the utility per price of any item that agent ¢ is allocated is at least as

good as that of any other item (all agents only purchase optimal items). Finally,
by (1.13) we may sum over the items j € [m] as

m

m
B
(xi,P) = E TijPj = E Tij——2 = B;
por = (&, x;)

so that an equilibrium exists in the Fisher market where participants only purchase
optimal items and spend the entirety of their budgets B;, as the feasible set is
non-empty and the objective is concave. O

Remark 2.4. Note that the solution above is Pareto optimal since any alternative
allocation has a lesser Y . | B;In(a;,x;) so that at least one of the terms in the
summation has decreased, hence at least one player is worse off.

Corollary 2.5. A Fisher market game with linear utilities has a symmetric, pure
Nash equilibrium where the payoffs are identical to the payoffs obtained from truthful

play.

Theorem 2.6. The Fisher market game with linear utilities has a Price of Anarchy
that is O(n).

Proof. We normalize the valuation vectors so that Y 7" a;; = ¢ for all i € [n].
Then, if each agent i assigns value only to its optimal item, the agent can guarantee
payoff
B, g™max max
U; 2 :Laz — a’L
> k=1 B n
We then have that the Price of Anarchy is
maxge g welf(s) Yo Biaex
minge g, welf(s) — %Z?:l B, arax N

PoA =

O

Remark 2.7. Please note that in [2] the “PoA” refers to 1/PoA as we have defined
it here. This caused a great deal of trouble for the author.

Theorem 2.8. The Fisher market game with linear utilities has a Price of Anarchy

that is Q(v/n).
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Proof. Consider a set of n = m? +m agents and m items such that B; = 1 for all
i € [m? +m)]. For i € [m], define valuation vectors a; = (0, ...,0, 1,0, ...,0) where
the 1 is in the ith spot, and for i € {m + 1,...,m? + m} define valuation vectors
a; = (1/m,...,1/m). The optimality conditions of the EG program then guarantee
that, for i € [m]

pr:>f2p—2>—=xn‘
(i, %)  ay w1 Di
and for i € {m+1,...,m?* +m},
1 _ Db
By S L

Z?il Aielie  Aij Zz 1T

so that all p; =: p must be the same. Then, the last EG optlmahty condition is

n m +m m+m m m
1:inj Z le] lem
i=1 j=1

i=1 j=1
:>pj:p:m+1

and s0 i = 77 for all i € [m], wi; = =t for i € {m +1,...,m* + m}, and
all other z;; are zero. Thus, a market equ1hbr1um under truthful Valuations would

yield social welfare s + m(#il) pe= +1 Since giving unit (total) amount of item
i to agent 4 for ¢ € [m — 1] yields social welfare at least m — 1, the optimal social

welfare is at least m — 1. By Corollary 1.15 there exists a Nash equilibrium with
social welfare 2m/(m + 1), hence the Price of Anarchy is

2m
(m—-1)(m+1)
in a scenario with a maximum welfare at equilibrium that is equal to its minimum
welfare at equilibrium. We have then PoA > % so that the quantity is

Q(m), or Q(y/n). O

3. LEONTIEF UTILITIES

1/PoA <

Lemma 3.1. If a pair of strategies (s1,82) is a pure Nash equilibrium of the Fisher
market game with two agents and Leontief utilities, the utilities satisfy

ui(sh Sg) S Bi/azmax

Lemma 3.2. In a two-player Leontief-based Fisher market game, the uniform
strategies ensure player 1 gets u; > By /a**.

Theorem 3.3. Uniform strategies are an equilibria for the two-player Fisher mar-
ket game with Leontief utilities, and the utilities are
Bl B2

uy = K Uz = -
maxje[m} a1j mane[m] agj

Proof. For every agent i € [n] we define

max min ,

a; °" = max a;;, a; = min a4
J€[m] JE€[m]
max .__ min ,__ :
5% 1= max s;j, S; = min s;;
J€[m] J€[m]
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If we fix the strategy so of agent 2, then the best response of agent 1 would be to
request exactly what is available, i.e.
S92
s1= (s1))semmly 515 =1 = 5z Be
2

which yields utility
1—- 32 B,
) S
U1(517S2) = mm —
Jj€[m] aij

and where, for all items j € [m], agent 2 is allocated

52
25 = max 02
&b

with utility
us(s1,82) = Ba/sy™

Then, since Z:"Zl pj=> 1 Bi=1,

B; B; B;
3.4 ! — v o< < L
(34) il 52) D pjsij SR T (s, 2) < s

Then, if either agent does not recieve utility u}(s1,s2) = B;/s"®*, one of the agents
increases their allocation by following the best response strategy above. Thus, by
Lemma 1.14, 1.15 and equation 1.17, the uniform strategies yield a Nash equilibrium
with u; = B;/a™®*. O

Theorem 3.5. The Fisher market game with Leontief utilities has a Price of An-
archy that is O(n).

Proof. We first note that optimizing allocation in Leontief utility-based Fisher mar-
kets involves z;;/a;; equal across all goods j for a specific agent ¢ (else there is
allocation that is going to waste, since equal allocation per requirement yields the
same utility). Thus,

m m
Tij = a;ju; = B = Z$ijpj = uj Zaijpj
j=1 j=1
We then have
m 2 m max = n max
2i=1Pi0i Dy Pid; 2 k=1 Brai™
since there is unit supply of every item and an equivalent net budget. Moreover,

each player gets at most unit amount of any item hence social welfare is bounded
as

U; =

n n n 1
St £ Su =3 o
i=1 i=1 i=1 1
Then, the Price of Anarchy is at most
= 1/0p™
> i1 (Bif Xp—1 Brai™)

so that under the assumption of delta normalization, i.e a}"**B; = J, we have that
PoA < (1/6) ZL By (ZZ:1 Bk)2

Yoim Bi/ (o Be(9/By) XL BY
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so that by Holder’s Inequality,

(ZZ:1 Bk)2 < (ZZ:1 Bk)2

=n n D) n =N n =n
(21:1 Bi )(21:1 12) (Zi:1 B; - 1)2
Hence, the Price of Anarchy is O(n). d
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