PCA: THEORETICAL AND COMPUTATIONAL
CONSIDERATIONS

LUCAS TUCKER

ABSTRACT. This paper traces PCA from its theoretical underpinnings to a
couple algorithms used today.

CONTENTS
1. Theory and Motivation 1
2. Practical Algorithms 4
References 5

1. THEORY AND MOTIVATION

We first examine a commonly used linear method to reduce the dimension of a
data matrix. This method, Principal Component Analysis (PCA), is most helpful
for high-dimensional data with linearly related, highly correlated features. This
discussion will lead to a discussion of current implementations of the algorithm in
software libraries. Note that by “large scale PCA” we refer to datasets with a large
number of samples relative to the number of features.

Definition 1.1. We define a “data matrix” to be X € RP*", with elements X =
(Xij;) for i € [p], j € [n]. Intuitively, we may think of a row of X as a feature vector
across each of n observations.

Remark 1.2. Suppose we are interested in creating k < p new features for our
data out of linear combinations of features from our original observations. If we let
x; denote the i-th row of our data matrix X, for ¢ € [p], then such a new feature
y € R™ would take the form

p
y = E a;x; =a'X
i—1

for a = (a1, ...,ap)" € RP.

Remark 1.3. If we want our new features y to capture the variance of our data
well, we may wish to maximize Var(a’X), where in this case X is regarded as

Date: September 15, 2023.

2 LUCAS TUCKER

the underlying p-variate random variable for the data matrix. However, since this
quantity depends on the magnitude \|a||, we perform the maximization

max Var(a’X)= max g g a;a;Cov(x;,x;) = max a'Xa
llall2=1 llall2=1 = llallo=1
j=1
where 3 denotes the covariance matrix for X with ;; = Cov(s, j), i.e. the covari-
ance between features ¢ and j.

Definition 1.4. We use the “sample covariance matrix” as an unbiased estimator
for & given by ¥ = - Z;-L:l(xi —X)(x; —X)'. In practice, the correlation matrix
is often used to standardize measurements.

Remark 1.5. If we treat the p original features of our data matrix X as “direc-
tions” in a p-dimensional space, we may want to find k < p orthogonal directions

(linear combinations of the original p) that maximize variance, in which case we
are interested in a; € RP with

a; = max (a’ Za) such that (a,a;) =0 for j <1

llall2=1
for i € [k].
Lemma 1.6. The a; as defined in Remark 1.5 are eigenvectors of the covariance
matriz X, i.e. fori € [k] we have Xa; = \;a; for \; € R.

Proof. We make use of Lagrange multipliers. In the case that i = 1, we wish to
maximize

L :=a'Sa— Aa'a—1)
so that taking the derivative and setting equal to 0, yields
Vali = 2%a — 2\a = 0,

= Sa=)\a
hence a is an eigenvector of Sa with eigenvalue A1 := A. Now suppose for the sake
of induction that iaj = Mja; for j < i. Then, since we are maximizing agiai
subject to the constraints ||a||3 = 1 as well as (a,a;) = 0 for j < 4, our Lagrangian
is
Ei::alfla— a'a—1) 25 (a'a; —0)
j<i

where the §; and A are the Lagrange multipliers for each constraint. We then have

Val;=25a—2)a—) da; =0,
j<i
=0, = (ag,2f]a> (ag,2)a) — ag,25 a;) =2a Eag Op
j<t
= 2)\ga/ag —0p=0,=0
for £ € [i — 1]. Therefore,
25%a — 2)\a — Z(Sjaj —2%a—2Xa=0

j<i

so that R
Ya=)\a

for A\; := A, so that by induction we may conclude the result. [

PCA: THEORETICAL AND COMPUTATIONAL CONSIDERATIONS 3

Corollary 1.7. Our k new features y; := a,X due to PCA satisfy
A ~ Var(yy)
k -k
Ej:l Aj Zj:l Var(y;)

and for k = p we have
k P
ZVar(yj) = ZVar(xi)
j=1 i=1

Proof. To satisfy the first part of Corollary 1.7, it suffices to observe that
Var(yj) = a;-f]aj =)\ja;»aj = Aj

For the second part, we have that S € RP*P has trace equal to its sum of eigenval-
ues, hence

Tr(Z) = ZVar(xi) = Z)\j = ZVar(yj)

i= j=1 j=1

O

Remark 1.8. Corollary 1.7 suggests that our new features y; define a proportion
of the total variance, which is specified by their respective eigenvalues A;. This
also helps gives us an answer to the number k of distilled features we want. In
particular, we fix a threshold percentage and choose the smallest k such that the
top k PCA-derived features explain at least that percentage of the total variance.

Theorem 1.9. (Singular Value Decomposition) Any real matriz A € R™*™ may
be expressed as A = UXV', where U and V are orthogonal and ¥ is diagonal with
non-negative entries. The values of ¥ are called the “singular values”.

Proof. By the Spectral Theorem we may decompose the symmetric matrix A’A as
n
AA=VAV = Z Aiviv,
i=1

(the v; are columns of V) so that we may define
AVZ'

u; : ow
Then,
U:=(uy,...,u,) € R™*"
satisfies
U= AVdiag(l, - 1) = AVY!
VATV
hence

A=UVys Ht=vuxvt=Uuxv’
where V' is orthogonal (due to the Spectral Theorem), ¥ is diagonal with ¥,;; =
Vi >0 (\; > 0 since A’A is symmetric), and

1 1Al i
u;,u;) = vViAAv; = ——(v;,v;) =0
() = e, o)

so that U is also orthogonal. [

4 LUCAS TUCKER
Remark 1.10. Note that, by applying SVD to A,
AAV =VXU'USV'V =VYY =VE

hence the columns v; of V are eigenvectors of our sample data matrix A’ A, where
v;A is the i-th principal component of A. This means that an accurate Singular
Value Decomposition yields an accurate PCA solution.

2. PRACTICAL ALGORITHMS

Remark 2.1. We now present a popular randomized Singular Value Decomposition
due to Halko et al. (2010). The intuition is to find a low-dimensional subspace
(spanned by H) that captures most of the action of A using a random matrix G, so
that A =~ QQ'A. The orth subroutine orthonormalizes H using Gram-Schmidt (as
in QR decomposition) and the svd command invokes the LAPACK singular value
decomposition for the smaller matrix A’Q, using the gesvd subroutine.

Algorithm 1 Randomized SVD

Require: A € R™*" k < min(m,n), over-sampling parameter d
Assign]« k+2
Sample G € R™*! with g;; ~ N(0,1)
Compute H := (AG | AA'AG| ... | (AA")"TAG| (AA)?AG) € R™*Hd+D)
Compute @) = orth(H)
Compute T := A'Q
Compute svd(T) = VEW’
Compute U := QW
return U(:,1:k), V(:,1:k), (1 :k,1: k)

Remark 2.2. Observe that, if v; is an eigenvector of AA’ with eigenvalue oy, i.e.
a singular vector of A, then v is also an eigenvector of

(AAYTAA (AA) = (A A)((AA')1A)Y

so that v is a singular vector of (AA’)7A with singular value o-¢*". Thus, this
process biases the action of the resulting matrix toward more dominant singular
vectors (those with higher absolute value), which is advantageous for low-rank con-
struction. The python library scikit-learn’s implementation of randomized_svd
does by default the above algorithm but computes @ by orthonormalizing after

repeated multiplication by A and A’.

Remark 2.3. What happens if we cannot even fit A into memory? One way to
handle this is by iteratively computing the singular value decomposition in batches
as follows. Note that the “correction” subroutine stores a running mean correction
vector in M.

PCA: THEORETICAL AND COMPUTATIONAL CONSIDERATIONS 5

Algorithm 2 scikit-learn’s SVD calculation in IncrementalPCA (simplified)

Require: A € R™*" k < min(m,n) estimated components, batch size b

Initialize empty array P

for batch B C A with B € R®" do
Assign M < correction(B, M)
Concatenate B «+ [P, B, M] € RUFF+1)xn
Compute svd(B) = UXV’
Assign P« (SV')[: k]

end for

return U, 2, V'

Remark 2.4. The above approach effectively incorporates the singular vectors
divined from parts of the matrix A seen thus far.

(1]

2

3

(4]

REFERENCES

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M.,& Duchesnay, E. (2011). Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
https://jmlr.csail.mit.edu/papers/v12/pedregosalla.html

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence Main
Track. Pages 3695-3704. https://doi.org/10.24963 /ijcai.2023/411

André Altmann, Laura Tolosi, Oliver Sander, Thomas Lengauer, Permutation importance: a
corrected feature importance measure, Bioinformatics, Volume 26, Issue 10, May 2010, Pages
1340-1347, https://doi.org/10.1093/bioinformatics/btql34

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. STAM Review, 53(2):217-288,
2011.

	1. Theory and Motivation
	2. Practical Algorithms
	References

