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Abstract. This paper traces PCA from its theoretical underpinnings to a
couple algorithms used today.
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1. Theory and Motivation

We first examine a commonly used linear method to reduce the dimension of a
data matrix. This method, Principal Component Analysis (PCA), is most helpful
for high-dimensional data with linearly related, highly correlated features. This
discussion will lead to a discussion of current implementations of the algorithm in
software libraries. Note that by “large scale PCA” we refer to datasets with a large
number of samples relative to the number of features.

Definition 1.1. We define a “data matrix” to be X ∈ Rp×n, with elements X =
(Xij) for i ∈ [p], j ∈ [n]. Intuitively, we may think of a row of X as a feature vector
across each of n observations.

Remark 1.2. Suppose we are interested in creating k ≤ p new features for our
data out of linear combinations of features from our original observations. If we let
xi denote the i-th row of our data matrix X, for i ∈ [p], then such a new feature
y ∈ Rn would take the form

y =

p∑
i=1

aixi = a′X

for a = (a1, ..., ap)
′ ∈ Rp.

Remark 1.3. If we want our new features y to capture the variance of our data
well, we may wish to maximize Var(a′X), where in this case X is regarded as
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the underlying p-variate random variable for the data matrix. However, since this
quantity depends on the magnitude ||a||, we perform the maximization

max
||a||2=1

Var(a′X) = max
||a||2=1

p∑
i=1

p∑
j=1

aiajCov(xi,xj) = max
||a||2=1

a′Σa

where Σ denotes the covariance matrix for X with Σij = Cov(i, j), i.e. the covari-
ance between features i and j.

Definition 1.4. We use the “sample covariance matrix” as an unbiased estimator

for Σ given by Σ̂ = 1
n−1

∑n
j=1(xi−x)(xi−x)′. In practice, the correlation matrix

is often used to standardize measurements.

Remark 1.5. If we treat the p original features of our data matrix X as “direc-
tions” in a p-dimensional space, we may want to find k ≤ p orthogonal directions
(linear combinations of the original p) that maximize variance, in which case we
are interested in ai ∈ Rp with

ai = max
||a||2=1

(a′Σ̂a) such that ⟨a,aj⟩ = 0 for j < i

for i ∈ [k].

Lemma 1.6. The ai as defined in Remark 1.5 are eigenvectors of the covariance

matrix Σ̂, i.e. for i ∈ [k] we have Σ̂ai = λiai for λi ∈ R.
Proof. We make use of Lagrange multipliers. In the case that i = 1, we wish to
maximize

L1 := a′Σ̂a− λ(a′a− 1)

so that taking the derivative and setting equal to 0p yields

∇aL1 = 2Σ̂a− 2λa := 0p

⇒ Σ̂a = λa

hence a is an eigenvector of Σ̂a with eigenvalue λ1 := λ. Now suppose for the sake

of induction that Σ̂aj = λjaj for j < i. Then, since we are maximizing a′iΣ̂ai
subject to the constraints ||a||22 = 1 as well as ⟨a,aj⟩ = 0 for j < i, our Lagrangian
is

Li := a′Σ̂a− λ(a′a− 1)−
∑
j<i

δj(a
′aj − 0)

where the δj and λ are the Lagrange multipliers for each constraint. We then have

∇aLi = 2Σ̂a− 2λa−
∑
j<i

δjaj =: 0p

⇒ 0p = ⟨aℓ, 2Σ̂a⟩ − ⟨aℓ, 2λa⟩ − ⟨aℓ,
∑
j<i

δjaj⟩ = 2a′Σ̂aℓ − δℓ

= 2λℓa
′aℓ − δℓ ⇒ δℓ = 0p

for ℓ ∈ [i− 1]. Therefore,

2Σ̂a− 2λa−
∑
j<i

δjaj = 2Σ̂a− 2λa = 0p

so that
Σ̂a = λia

for λi := λ, so that by induction we may conclude the result. □
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Corollary 1.7. Our k new features yi := a′iX due to PCA satisfy

λi∑k
j=1 λj

=
Var(yi)∑k
j=1 Var(yj)

and for k = p we have
k∑

j=1

Var(yj) =

p∑
i=1

Var(xi)

Proof. To satisfy the first part of Corollary 1.7, it suffices to observe that

Var(yj) = a′jΣ̂aj = λja
′
jaj = λj

For the second part, we have that Σ̂ ∈ Rp×p has trace equal to its sum of eigenval-
ues, hence

Tr(Σ̂) =

p∑
i=1

Var(xi) =

p∑
j=1

λj =

p∑
j=1

Var(yj)

□

Remark 1.8. Corollary 1.7 suggests that our new features yj define a proportion
of the total variance, which is specified by their respective eigenvalues λj . This
also helps gives us an answer to the number k of distilled features we want. In
particular, we fix a threshold percentage and choose the smallest k such that the
top k PCA-derived features explain at least that percentage of the total variance.

Theorem 1.9. (Singular Value Decomposition) Any real matrix A ∈ Rm×n may
be expressed as A = UΣV ′, where U and V are orthogonal and Σ is diagonal with
non-negative entries. The values of Σ are called the “singular values”.

Proof. By the Spectral Theorem we may decompose the symmetric matrix A′A as

A′A = V ΛV ′ =:

n∑
i=1

λiviv
′
i

(the vi are columns of V ) so that we may define

ui :=
Avi√
λi

Then,

U := (u1, ...,un) ∈ Rm×n

satisfies

U = AV diag

(
1√
λ1

, ...,
1√
λn

)
:= AV Σ−1

hence

A = U(V Σ−1)−1 = UΣV −1 = UΣV ′

where V is orthogonal (due to the Spectral Theorem), Σ is diagonal with Σii =√
λi > 0 (λi > 0 since A′A is symmetric), and

⟨ui,uj⟩ =
1√
λiλj

v′
jA

′Avi =
λi√
λiλj

⟨vi,vj⟩ = 0

so that U is also orthogonal. □
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Remark 1.10. Note that, by applying SVD to A,

A′AV = V Σ′U ′UΣV ′V = V Σ′Σ = V Σ

hence the columns vi of V are eigenvectors of our sample data matrix A′A, where
v′
iA is the i-th principal component of A. This means that an accurate Singular

Value Decomposition yields an accurate PCA solution.

2. Practical Algorithms

Remark 2.1. We now present a popular randomized Singular Value Decomposition
due to Halko et al. (2010). The intuition is to find a low-dimensional subspace
(spanned by H) that captures most of the action of A using a random matrix G, so
that A ≈ QQ′A. The orth subroutine orthonormalizes H using Gram-Schmidt (as
in QR decomposition) and the svd command invokes the LAPACK singular value
decomposition for the smaller matrix A′Q, using the gesvd subroutine.

Algorithm 1 Randomized SVD

Require: A ∈ Rm×n, k ≪ min(m,n), over-sampling parameter d
Assign l← k + 2
Sample G ∈ Rn×l with gij ∼ N (0, 1)

Compute H := (AG |AA′AG | . . . | (AA′)i−1AG | (AA′)dAG) ∈ Rm×l(d+1)

Compute Q = orth(H)
Compute T := A′Q
Compute svd(T ) = Ṽ Σ̃W ′

Compute Ũ := QW
return Ũ(:, 1 : k), Ṽ (:, 1 : k), Σ̃(1 : k, 1 : k)

Remark 2.2. Observe that, if vi is an eigenvector of AA′ with eigenvalue σii, i.e.
a singular vector of A, then v is also an eigenvector of

(AA′)qAA′(AA′)q = ((AA′)qA)((AA′)qA)′

so that v is a singular vector of (AA′)qA with singular value σ2q+1
ii . Thus, this

process biases the action of the resulting matrix toward more dominant singular
vectors (those with higher absolute value), which is advantageous for low-rank con-
struction. The python library scikit-learn’s implementation of randomized svd

does by default the above algorithm but computes Q by orthonormalizing after
repeated multiplication by A and A′.

Remark 2.3. What happens if we cannot even fit A into memory? One way to
handle this is by iteratively computing the singular value decomposition in batches
as follows. Note that the “correction” subroutine stores a running mean correction
vector in M .



PCA: THEORETICAL AND COMPUTATIONAL CONSIDERATIONS 5

Algorithm 2 scikit-learn’s SVD calculation in IncrementalPCA (simplified)

Require: A ∈ Rm×n, k ≪ min(m,n) estimated components, batch size b
Initialize empty array P
for batch B ⊂ A with B ∈ Rb×n do
Assign M ← correction(B,M)
Concatenate B ← [P,B,M ] ∈ R(b+k+1)×n

Compute svd(B) = UΣV ′

Assign P ← (ΣV ′)[: k]
end for
return U,Σ, V ′

Remark 2.4. The above approach effectively incorporates the singular vectors
divined from parts of the matrix A seen thus far.
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