PCA: THEORETICAL AND COMPUTATIONAL
CONSIDERATIONS

LUCAS TUCKER

ABSTRACT. This paper traces PCA from its theoretical underpinnings to a
couple algorithms used today.
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1. THEORY AND MOTIVATION

We first examine a commonly used linear method to reduce the dimension of a
data matrix. This method, Principal Component Analysis (PCA), is most helpful
for high-dimensional data with linearly related, highly correlated features. This
discussion will lead to a discussion of current implementations of the algorithm in
software libraries. Note that by “large scale PCA” we refer to datasets with a large
number of samples relative to the number of features.

Definition 1.1. We define a “data matrix” to be X € RP*", with elements X =
(Xij;) for i € [p], j € [n]. Intuitively, we may think of a row of X as a feature vector
across each of n observations.

Remark 1.2. Suppose we are interested in creating k < p new features for our
data out of linear combinations of features from our original observations. If we let
x; denote the i-th row of our data matrix X, for ¢ € [p], then such a new feature
y € R™ would take the form

p
y = E a;x; =a'X
i—1

for a = (a1, ...,ap)" € RP.

Remark 1.3. If we want our new features y to capture the variance of our data
well, we may wish to maximize Var(a’X), where in this case X is regarded as
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the underlying p-variate random variable for the data matrix. However, since this
quantity depends on the magnitude \|a||, we perform the maximization

max Var(a’X)= max g g a;a;Cov(x;,x;) = max a'Xa
llall2=1 llall2=1 = llallo=1
j=1
where 3 denotes the covariance matrix for X with ;; = Cov(s, j), i.e. the covari-
ance between features ¢ and j.

Definition 1.4. We use the “sample covariance matrix” as an unbiased estimator
for & given by ¥ = - Z;-L:l(xi —X)(x; —X)'. In practice, the correlation matrix
is often used to standardize measurements.

Remark 1.5. If we treat the p original features of our data matrix X as “direc-
tions” in a p-dimensional space, we may want to find k < p orthogonal directions

(linear combinations of the original p) that maximize variance, in which case we
are interested in a; € RP with

a; = max (a’ Za) such that (a,a;) =0 for j <1

llall2=1
for i € [k].
Lemma 1.6. The a; as defined in Remark 1.5 are eigenvectors of the covariance
matriz X, i.e. fori € [k] we have Xa; = \;a; for \; € R.

Proof. We make use of Lagrange multipliers. In the case that i = 1, we wish to
maximize

L :=a'Sa— Aa'a—1)
so that taking the derivative and setting equal to 0, yields
Vali = 2%a — 2\a = 0,

= Sa=)\a
hence a is an eigenvector of Sa with eigenvalue A1 := A. Now suppose for the sake
of induction that iaj = Mja; for j < i. Then, since we are maximizing agiai
subject to the constraints ||a||3 = 1 as well as (a,a;) = 0 for j < 4, our Lagrangian
is
Ei::alfla— a'a—1) 25 (a'a; —0)
j<i

where the §; and A are the Lagrange multipliers for each constraint. We then have

Val;=25a—2)a— ) da; =0,
j<i
=0, = (ag,2f]a> (ag,2)a) — ag,25 a;) =2a Eag Op
j<t
= 2)\ga/ag —0p=0,=0
for £ € [i — 1]. Therefore,
25%a — 2)\a — Z(Sjaj —2%a—2Xa=0

j<i

so that R
Ya=)\a

for A\; := A, so that by induction we may conclude the result. [
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Corollary 1.7. Our k new features y; := a,X due to PCA satisfy
A ~ Var(yy)
k -k
Ej:l Aj Zj:l Var(y;)

and for k = p we have
k P
ZVar(yj) = ZVar(xi)
j=1 i=1

Proof. To satisfy the first part of Corollary 1.7, it suffices to observe that
Var(yj) = a;-f]aj = )\ja;»aj = Aj

For the second part, we have that S € RP*P has trace equal to its sum of eigenval-
ues, hence

Tr(Z) = ZVar(xi) = Z)\j = ZVar(yj)

i= j=1 j=1

O

Remark 1.8. Corollary 1.7 suggests that our new features y; define a proportion
of the total variance, which is specified by their respective eigenvalues A;. This
also helps gives us an answer to the number k of distilled features we want. In
particular, we fix a threshold percentage and choose the smallest k such that the
top k PCA-derived features explain at least that percentage of the total variance.

Theorem 1.9. (Singular Value Decomposition) Any real matriz A € R™*™ may
be expressed as A = UXV', where U and V are orthogonal and ¥ is diagonal with
non-negative entries. The values of ¥ are called the “singular values”.

Proof. By the Spectral Theorem we may decompose the symmetric matrix A’A as
n
AA=VAV = Z Aiviv,
i=1

(the v; are columns of V) so that we may define
AVZ'

u; : ow
Then,
U:=(uy,...,u,) € R™*"
satisfies
U= AVdiag(l, - 1) = AVY!
VATV
hence

A=UVys Ht=vuxvt=Uuxv’
where V' is orthogonal (due to the Spectral Theorem), ¥ is diagonal with ¥,;; =
Vi >0 (\; > 0 since A’A is symmetric), and

1 1Al i
u;,u;) = vViAAv; = ——(v;,v;) =0
() = e, o)

so that U is also orthogonal. [
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Remark 1.10. Note that, by applying SVD to A,
AAV =VXU'USV'V =VYY =VE

hence the columns v; of V are eigenvectors of our sample data matrix A’ A, where
v;A is the i-th principal component of A. This means that an accurate Singular
Value Decomposition yields an accurate PCA solution.

2. PRACTICAL ALGORITHMS

Remark 2.1. We now present a popular randomized Singular Value Decomposition
due to Halko et al. (2010). The intuition is to find a low-dimensional subspace
(spanned by H) that captures most of the action of A using a random matrix G, so
that A =~ QQ'A. The orth subroutine orthonormalizes H using Gram-Schmidt (as
in QR decomposition) and the svd command invokes the LAPACK singular value
decomposition for the smaller matrix A’Q, using the gesvd subroutine.

Algorithm 1 Randomized SVD

Require: A € R™*" k < min(m,n), over-sampling parameter d
Assign ]« k+2
Sample G € R™*! with g;; ~ N(0,1)
Compute H := (AG | AA'AG| ... | (AA")"TAG| (AA)?AG) € R™*Hd+D)
Compute @) = orth(H)
Compute T := A'Q
Compute svd(T) = VEW’
Compute U := QW
return U(:,1:k), V(:,1:k), (1 :k,1: k)

Remark 2.2. Observe that, if v; is an eigenvector of AA’ with eigenvalue oy, i.e.
a singular vector of A, then v is also an eigenvector of

(AAYTAA (AA) = (A A)((AA')1A)Y

so that v is a singular vector of (AA’)7A with singular value o-¢*". Thus, this
process biases the action of the resulting matrix toward more dominant singular
vectors (those with higher absolute value), which is advantageous for low-rank con-
struction. The python library scikit-learn’s implementation of randomized_svd
does by default the above algorithm but computes @ by orthonormalizing after

repeated multiplication by A and A’.

Remark 2.3. What happens if we cannot even fit A into memory? One way to
handle this is by iteratively computing the singular value decomposition in batches
as follows. Note that the “correction” subroutine stores a running mean correction
vector in M.
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Algorithm 2 scikit-learn’s SVD calculation in IncrementalPCA (simplified)

Require: A € R™*" k < min(m,n) estimated components, batch size b

Initialize empty array P

for batch B C A with B € R®" do
Assign M < correction(B, M)
Concatenate B «+ [P, B, M] € RUFF+1)xn
Compute svd(B) = UXV’
Assign P« (SV')[: k]

end for

return U, 2, V'

Remark 2.4. The above approach effectively incorporates the singular vectors
divined from parts of the matrix A seen thus far.
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