NOTES AND SOLUTIONS TO MOHRI'S FOUNDATIONS OF MACHINE LEARNING

LUCAS TUCKER

ABSTRACT. The following are a series of notes and solutions to Chapters 2, 3, 4, and 15 from *Foundations of Machine Learning* by Mehryar Mohri.

Contents

Chapter 2 Notes	2
Ch. 2 Exercises	3
2.2	4
2.3	4
2.4	4
2.6	5
2.7	5
Chapter 3 Notes	5
Ch. 3 Exercises	17
3.1	17
3.2	17
3.3	17
3.11	19
3.27	20
3.31	21
Chapter 4 Notes	22
Ch. 4 Exercises	24
4.1	25
4.2	25
4.3	25
4.4	25
Chapter 15 Notes	26
Ch. 15 Exercises	29
15.1	29
15.2	30
15.3	31
Vishnoi Problems (work in progress):	34
1	34

Date: September 15, 2023.

LUCAS TUCKER

Chapter 2 Notes

To show $E[\hat{R}_S(h)] = R(h)$, or that the expectation of empirical error over m samples drawn from a distribution D is equal to generalization error, we have

$$E_{S \sim D^m}[\widehat{R}_S(h)] = \frac{1}{m} \sum_{i=1}^m E_{S \sim D^m}[\chi_{c(x_i) \neq h(x_i)}]$$

= $E_{S \sim D^m, x \in S}[\chi_{c(x) \neq h(x)}] = E_{x \sim D}[\chi_{c(x) \neq h(x)}] = R(h)$

Definition (PAC-learning): A concept class C is "PAC-learnable" if there exists an algorithm A and a polynomial function poly(., ., ., .) such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathcal{D} on \mathcal{X} and for any target concept $c \in C$,

$$\mathbb{P}_{S \sim D^m}[R(h_S) \le \epsilon] \ge 1 - \delta$$

where h_S denotes the hypothesis returned by \mathcal{A} after receiving the labeled sample S. If \mathcal{A} further runs in $\text{poly}(1/\epsilon, 1/\delta, n, \text{size}(c))$ then \mathcal{C} is said to be "efficiently PAC-learnable" and \mathcal{A} is deemed a "PAC learning algorithm for \mathcal{C} ".

Theorem (Learning Bound – finite, \mathcal{H} consistent): Let \mathcal{H} be a finite set of functions from \mathcal{X} to \mathcal{Y} . Let \mathcal{A} be an algorithm that for any target concept $c \in \mathcal{H}$ and iid sample S returns a consistent hypothesis h_S such that $\widehat{R}_S(h_S) = 0$. Then for any $\epsilon, \delta > 0$,

$$m \ge \frac{1}{\epsilon} (\log |\mathcal{H}| + \log \frac{1}{\delta})$$
$$\Rightarrow \mathbb{P}_{S \sim D^m}[R(h_S) \le \epsilon] \ge 1 - \delta$$

Proof: Fix $\epsilon > 0$ and consider $\mathcal{H}_{\epsilon} := \{h \in \mathcal{H} : R(h) > \epsilon\}$. Then, $\mathbb{P}[\widehat{R}_{S}(h) = 0] \leq (1-\epsilon)^{m}$ for $S \sim \mathcal{D}$ of size m. Hence,

$$\mathbb{P}[\exists h \in \mathcal{H}_{\epsilon} : R_{S}(h) = 0]$$

$$= \mathbb{P}[\widehat{R}_{S}(h_{1}) = 0 \lor \widehat{R}_{S}(h_{2}) = 0 \lor \ldots \lor \widehat{R}_{S}(|\mathcal{H}|) = 0]$$

$$\leq \sum_{h \in \mathcal{H}_{\epsilon}} \mathbb{P}[\widehat{R}_{S}(h) = 0] \leq |\mathcal{H}|(1 - \epsilon)^{m} \leq |\mathcal{H}|e^{-m\epsilon}$$

$$\Rightarrow \mathbb{P}_{S \sim D^{m}}[R(h_{S}) \leq \epsilon] = \mathbb{P}[h_{S} \notin \mathcal{H}_{\epsilon}|\widehat{R}_{S}(h_{S}) = 0] = 1 - \mathbb{P}[h_{S} \in \mathcal{H}_{\epsilon}|\widehat{R}_{S}(h_{S}) = 0] \geq 1 - \delta$$

Corollary 2.10: Fix $\epsilon > 0$. Then, for any hypothesis $h : \mathcal{X} \to \{0, 1\}$, we have

$$\mathbb{P}_{S \sim \mathcal{D}^m}[\widehat{R}_S(h) - R(h) \ge \epsilon] \le e^{-2m\epsilon^2}$$

and

$$\mathbb{P}_{S \sim \mathcal{D}^m}[\widehat{R}_S(h) - R(h) \le -\epsilon] \le e^{-2m\epsilon^2}$$

hence

$$\mathbb{P}_{S \sim \mathcal{D}^m}[|\widehat{R}_S(h) - R(h)| \ge \epsilon] \le 2e^{-2m\epsilon^2}$$

Proof: Use Hoeffding's Lemma $(E[e^{tX}] \leq e^{\frac{t^2(b-a)^2}{8}})$ and the Chernoff Bounding technique $(\mathbb{P}[X \geq \epsilon] = \mathbb{P}[e^{tX} \geq e^{t\epsilon}] \leq e^{-t\epsilon}E[e^{tX}])$ for Hoeffding's Inequality

 $(\mathbb{P}[X - E[X] \ge \epsilon] \le e^{\frac{-2\epsilon^2}{\sum_{i=1}^m (a_i - b_i)^2}} \text{ for } X = \sum_{i=1}^m X_i \text{ with } X_i \in (a_i, b_i)). \text{ Note that here } \widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m \chi_{h(x) \ne c(x)} \text{ so that the value } \sum_{i=1}^m (a_i - b_i)^2 \text{ in this case is equal to } \sum_{i=1}^m (\frac{1-0}{m})^2 = m \cdot \frac{1}{m^2} = \frac{1}{m}.$

Corollary 2.11 (Generalization Bound): Set $2\epsilon^{-2m\epsilon^2} = \delta$ in the previous part.

Theorem 2.13 (Learning bound – finite, \mathcal{H} inconsistent case): Let \mathcal{H} be a finite hypothesis set. Then, for any $\delta > 0$ and any $h \in \mathcal{H}$, we have

$$\mathbb{P}\left[R(h) \le \widehat{R}_S(h) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta}}{2m}}\right] \ge 1 - \delta$$

Proof: We find that

$$\mathbb{P}[\exists h \in \mathcal{H} : R(h) - R_S(h) > \epsilon]$$

= $\mathbb{P}[(R(h_1) - \hat{R}_S(h_1) > \epsilon) \lor \ldots \lor (R(h_{|\mathcal{H}|}) - \hat{R}_S(h_{|\mathcal{H}|}) > \epsilon)]$
$$\leq \sum_{i=1}^{|\mathcal{H}|} \mathbb{P}[R(h_i) - \hat{R}_S(h_i) > \epsilon] \leq 2|\mathcal{H}|e^{-2m\epsilon^2}$$

so then

$$\delta := 2|\mathcal{H}|e^{-2m\epsilon^2} \Rightarrow -2m\epsilon^2 = \log\frac{\delta}{2|\mathcal{H}|} \Rightarrow \epsilon = \sqrt{\frac{-\log\frac{\delta}{2|\mathcal{H}|}}{2m}} = \sqrt{\frac{\log|\mathcal{H}| + \log\frac{2}{\delta}}{2m}}$$

Definition (Agnostic PAC-learning): Let \mathcal{H} be a hypothesis set. Then, \mathcal{A} is an agnostic PAC-learning algorithm if there exists a polynomial function poly(.,.,.) such that for any $\epsilon, \delta > 0$ and any distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$,

$$m \ge \operatorname{poly}(\frac{1}{\epsilon}, \frac{1}{\delta}, n, \operatorname{size}(c)) \Rightarrow \mathbb{P}_{S \sim \mathcal{D}^m}[R(h_S) - \min_{h \in \mathcal{H}} R(h) \le \epsilon] \ge 1 - \delta$$

Note further that if \mathcal{A} is $\operatorname{poly}(\frac{1}{\epsilon}, \frac{1}{\delta}, n, \operatorname{size}(c))$, it is said to be an "efficient agnostic PAC-learning algorithm".

Definition: A scenario is "deterministic" if the label of a point can be uniquely determined by some measurable function $f : \mathcal{X} \to \mathcal{Y}$ with probability 1.

Definition (Bayes Error) Given a distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, the Bayes Error

$$R^* := \inf_{\substack{h: \mathcal{X} \to \mathcal{Y} \\ h \text{ measurable}}} R(h)$$

satisfies $R^* = 0$ in the deterministic case, and $R^* \neq 0$ in the stochastic case. A hypothesis h with $R(h) = R^*$ is called a "Bayes classifier".

Ch. 2 Exercises.

LUCAS TUCKER

2.2. An axis-aligned hyper-rectangle in \mathbb{R}^n is a set of the form $[a_1, b_1] \times ... \times [a_n, b_n]$. Suppose the set of all instances belong in $\mathcal{X} = \mathbb{R}^n$ and \mathcal{C} is the set of all axis-aligned hyper-rectangles in \mathbb{R}^n .

Let $R \in \mathcal{C}$ be a target concept and fix $\epsilon > 0$ so that $\mathbb{P}[R] > \epsilon$ (or else the algorithm presented below works immediately). Let $a_1, ..., a_n$ and $b_1, ..., b_n$ be 2n real values defining $R = [a_1, b_1] \times ... \times [a_n, b_n]$. We then define rectangles on the perimeter as $R_{i,0} := [a_1, b_1] \times ... \times [r_i, b_i] \times ... \times [a_n, b_n]$ and $R_{i,1} := [a_1, b_1] \times ... \times [a_i, r_i] \times ... \times [a_n, b_n]$ such that $r_i = \inf\{r \in \mathbb{R} : \mathbb{P}[[a_1, b_1] \times ... \times [a_i, r_i] \times ... \times [a_n, b_n] \ge \frac{\epsilon}{2n}\}$.

We define our algorithm \mathcal{A} as returning the tightest axis-aligned hyper-rectangle R_S containing the points labeled with 1. If $R(R_S) > \epsilon$, R_S must miss at least one rectangle R_i so that

$$\mathbb{P}_{S\sim\mathcal{D}^m}[R(R_S)>\epsilon] \le \mathbb{P}_{S\sim\mathcal{D}^m}[\bigcup_{i=1}^n \bigcup_{j=0}^1 \{R_S\cap R_{i,j}=\emptyset\}] \le \sum_{i=1}^n \sum_{j=0}^1 \mathbb{P}_{S\sim\mathcal{D}^m}[\{R_S\cap R_{i,j}=\emptyset\}]$$
$$\le \sum_{i=1}^n 2(1-\frac{\epsilon}{2n})^m = 2n(1-\frac{\epsilon}{2n})^m = 2ne^{m\log(1-\frac{\epsilon}{2n})} \le 2ne^{-\frac{m\epsilon}{2n}}$$

Hence,

$$\delta \geq 2ne^{-\frac{m\epsilon}{2n}} \iff m \geq \frac{2n}{\epsilon} \log \frac{2n}{\delta}$$

so that \mathcal{C} is PAC-learnable.

2.3. Let $\mathcal{X} = \mathbb{R}^2$ and consider the class \mathcal{C} of concepts of the form $c = \{(x, y) : x^2 + y^2 \leq r^2\}$ for some $r \in \mathbb{R}$. We fix $C \in \mathcal{C}$ as a target concept, along with an $\epsilon > 0$, and we define our algorithm \mathcal{A} as that which returns the infimum of circles containing the points labeled with 1. We denote this infimum as C_S .

We then define the circle C_0 as $C_0 = \operatorname{argmax}_{c \in \mathcal{C}} \{ \mathbb{P}[c \setminus C_s] : \mathbb{P}[c \setminus C_s] \leq \epsilon \}$. Therefore, if $R(C_S) > \epsilon$, then $C_S \cap C_0 = \emptyset$, so that

$$\mathbb{P}_{S \sim \mathcal{D}^m}[R(C_S) > \epsilon] \le \mathbb{P}_{S \sim \mathcal{D}^m}[C_S \cap C_0 = \emptyset] = (1 - \epsilon)^m \le e^{-m\epsilon}$$

Hence,

$$\delta \ge e^{-m\epsilon} \iff \log \frac{1}{\delta} \le m\epsilon \iff m \ge (\frac{1}{\epsilon})\log \frac{1}{\delta}$$

as desired.

2.4. Let $\mathcal{X} = \mathbb{R}^2$ and consider the set of concepts of the form $c = \{x \in \mathbb{R}^2 : ||x - x_0|| \leq r\}$ for some $x_0 \in \mathbb{R}^2$ and $r \in \mathbb{R}$. Suppose the target concept $c_0 \in \mathcal{C}$ has $\mathbb{P}[c_0] = k > 0$ and radius r_0 for some $k, r_0 \in \mathbb{R}$. If $p \in r_1 \cap r_2$ and $\ell \in \mathbb{R}^2$ is a line which passes through the intersection $r_1 \cap r_2$, we consider a translation of the circle along ℓ from p toward the center of the circle. In particular, a translation $c' := c_0 + \frac{r_0}{2}$ intersects each of the three regions r_i yet maintains an error of at least $\frac{k}{2}$ so that Gertrude's method does not work.

2.6. Consider now the case where the training points recieved by the learner are subject to the following noise: points labeled positively are randomly flipped to negative with probability less than $\eta' < 1/2$. We again consider the algorithm \mathcal{A} which returns the tightest rectangle containing positive points.

a) For a target concept R we can again assume $\mathbb{P}[R] > \epsilon$. Now suppose that $R(R') > \epsilon$. Then, the probability that R' (due to \mathcal{A}) misses a region r_j for $j \in [4]$ is at most $(1 - \frac{\epsilon}{4})^{m\eta'}$ for a sample S of size m.

b) Hence, $\mathbb{P}[R(R') > \epsilon] \leq 4(1 - \frac{\epsilon}{4})^{m\eta'} = 4e^{m\eta' \log(1 - \frac{\epsilon}{4})} \leq 4e^{-\frac{m\eta'\epsilon}{4}}$ so that $\delta \geq 4e^{-\frac{m\eta'\epsilon}{4}}$ yields a sample complexity bound of $m \geq \frac{4\log \frac{4}{\delta}}{\epsilon\eta'}$.

2.7. Consider a finite hypothesis set \mathcal{H} , assume that the target concept is in \mathcal{H} and that the label of a training point received by the learner is randomly changed with probability $\eta \in (0, \frac{1}{2})$ where $\eta \leq \eta' < \frac{1}{2}$.

a) For any $h \in \mathcal{H}$, let d(h) denote the probability that the label of a training point received by the learner disagrees with the one given by h. Let h^* be the target hypothesis. Since the learner will error with probability η (assuming R(h) = 0), we have $d(h^*) = \eta$.

Chapter 3 Notes

Definition: We define $\mathcal{G} := \{g : (x, y) \to L(h(x), y) \mid h \in \mathcal{H}\}$ as a family of loss functions $L : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ and let $\mathcal{Z} := \mathcal{X} \times \mathcal{Y}$. Note that many results below hold for arbitrary loss functions $L : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.

Definition (Empirical Rademacher Complexity): Let \mathcal{G} be a family of functions mapping from \mathcal{Z} to [a, b] and $S := (z_1, ..., z_m)$ a fixed sample in \mathcal{Z} . Then, the Rademacher complexity of \mathcal{G} with respect to sample S is given by

$$\widehat{\mathfrak{R}}_{S}(\mathcal{G}) = E_{\sigma} \Big[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(z_{i}) \Big] = E_{\sigma} \Big[\sup_{g \in \mathcal{G}} \frac{\sigma \cdot g_{S}}{m} \Big]$$

where $\sigma := (\sigma_1, ..., \sigma_m)^T$ with independent uniform random variables (Rademacher variables) $\sigma_i \in \{-1, 1\}$, and $g_S := (g(z_1), ..., g(z_m))^T$.

Definition (Rademacher Complexity): Let \mathcal{D} denote the distribution according to which samples are drawn. For $m \in \mathbb{N}$ with $m \geq 1$, we define

$$\mathfrak{R}_m(\mathcal{G}) := E_{S \sim \mathcal{D}^m}[\mathfrak{R}_S(\mathcal{G})]$$

Intuitively, Rademacher Complexity measures how robust a class of loss functions is, as a higher $\widehat{\mathfrak{R}}_{S}(\mathcal{G})$ for a set S indicates a space of functions more adaptable to arbitrary labelings.

Definition (Martingale Difference Sequence): A sequence of random variables $V_1, V_2, ...$ is a martingale difference sequence with respect to $X_1, X_2, ...$ if for any i > 0, V_i is a function of $X_1, ..., X_i$ and $E[V_{i+1}|X_1, ..., X_i] = 0$.

LUCAS TUCKER

Lemma D.6 Let V, Z be random variables such that E[V|Z] = 0 and for some function f and constant $c \ge 0$, $f(Z) \le V \le f(Z) + c$. Then $t > 0 \Rightarrow E[e^{tV}|Z] \le e^{\frac{t^2c^2}{8}}$

Proof: Repeat the proof of Hoeffding's Lemma but with conditional expectations.

Theorem D.7 (Azuma's Inequality): Let $V_1, V_2, ...$ be a martingale difference sequence with respect to random variables $X_1, X_2, ...$ and assume that for any i > 0 there exists $c_i \ge 0$ and a random variable $Z_i(X_1, ..., X_{i-1})$ such that $Z_i \le V_i \le Z_i + c_i$. Then for any $\epsilon > 0$ and $m \in \mathbb{N}$,

$$\mathbb{P}[\sum_{i=1}^{m} V_i \ge \epsilon] \le e^{\frac{-2\epsilon^2}{\sum_{i=1}^{m} c_i^2}}$$

and

$$\mathbb{P}[\sum_{i=1}^{m} V_i \le -\epsilon] \le e^{\frac{-2\epsilon^2}{\sum_{i=1}^{m} c_i^2}}$$

Proof: Using Lemma D.6, we find that $S_m := \sum_{i=1}^m V_i$ we have that $\mathbb{P}[S_m \ge \epsilon] = \mathbb{P}[e^{tS_m} \ge e^{t\epsilon}] \le e^{-t\epsilon} E[e^{tS_m}] = e^{-t\epsilon} E[e^{tS_{m-1}}] E[e^{tV_m}|X_1, ..., X_{m-1}] \le e^{-t\epsilon} E[e^{tS_{m-1}}] e^{\frac{t^2 c_m^2}{8}} \le e^{-t\epsilon} e^{\frac{t^2 \sum_{i=1}^m c_i^2}{8}}$. We then choose $t = \frac{4\epsilon}{\sum_{i=1}^m c_i^2}$ and repeat for the other inequality.

Theorem D.8 (McDiarmid's Inequality) Let $X_1, ..., X_m \in \mathcal{X}^m$ be a set of $m \geq 1$ independent random variables and suppose there exists $c_1, ..., c_m > 0$ such that $f: X^m \to \mathbb{R}$ satisfies

$$|f(x_1, ..., x_i, ..., x_m) - f(x_1, ..., x'_i, ..., x_m)| \le c_i$$

for any $i \in [m]$ and $x_1, ..., x_m, x'_i \in \mathcal{X}^m$. Then for $f(S) := f(X_1, ..., X_m)$ and any $\epsilon > 0$ we have

$$\mathbb{P}[f(S) - E[f(S)] \ge \epsilon] \le e^{\frac{-2\epsilon^2}{\sum_{i=1}^m c_i^2}}$$

and

$$\mathbb{P}[f(S) - E[f(S)] \le -\epsilon] \le e^{\frac{-2\epsilon^2}{\sum_{i=1}^m c_i^2}}$$

Proof: We define variables V = f(S) - E[f(S)] and $V_k = E[V|X_1, ..., X_k] - E[V|X_1, ..., X_{k-1}]$. Then, $E[V_k|X_1, ..., X_{k-1}] = E[E[V|X_1, ..., X_k] - E[V|X_1, ..., X_{k-1}]|X_1, ..., X_{k-1}] = 0$ so that the V_k are a martingale difference sequence. Then, we define

$$L_k := \inf_x E[V|X_1, ..., X_{k-1}, x] - E[V|X_1, ..., X_{k-1}]$$

and

$$U_k := \sup_{x} E[V|X_1, ..., X_{k-1}, x] - E[V|X_1, ..., X_{k-1}]$$

so that $U_k - L_k \leq \sup_{x,x'} E[V|X_1, ..., X_{k-1}, x] - E[V|X_1, ..., X_{k-1}, x'] \leq c_k$ so that $L_k \leq V_k \leq L_k + c_k$ and we may apply Azuma's Inequality.

Theorem 3.3 For \mathcal{G} a family of functions mapping \mathcal{Z} to [0,1], for any $\delta > 0$ and $g \in \mathcal{G}$ we have

$$\mathbb{P}\left[E[g(z)] \leq \frac{1}{m} \sum_{i=1}^{m} g(z_i) + 2\Re_m(\mathcal{G}) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}\right] \geq 1 - \delta$$
$$\mathbb{P}\left[E[g(z)] \leq \frac{1}{m} \sum_{i=1}^{m} g(z_i) + 2\widehat{\Re}_S(\mathcal{G}) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2m}}\right] \geq 1 - \delta$$

Proof: For any sample $S = (z_1, ..., z_m)$ and $g \in \mathcal{G}$, denote $\widehat{E}_S[g] := \frac{1}{m} \sum_{i=1}^m g(z_i)$. We then define

$$\Phi(S) := \sup_{g \in \mathcal{G}} (E[g] - \widehat{E}_S[g])$$

Let S, S' be two different samples (differing by z_m in S and z'_m in S') so

$$\Phi(S') - \Phi(S) \le \sup_{g \in \mathcal{G}} (E[g] - E[g] - \widehat{E}_S[g] + \widehat{E}_S[g]) \le \sup_{g \in \mathcal{G}} \frac{g(z_m) - g(z'_m)}{m} \le \frac{1}{m}$$

Repeating the argument for $\phi(S') - \phi(S)$, we get $|\Phi(S) - \Phi(S')| \le \frac{1}{m}$. Then, by McDiarmid's Inequality we have

$$\mathbb{P}[\Phi(S) - E[\Phi(S)] \le \epsilon] \le e^{\frac{-2\epsilon^2}{\sum_{i=1}^m \frac{1}{m^2}}} = e^{-2\epsilon^2 m}$$

. Note further that

$$\frac{\delta}{2} := e^{-2\epsilon^2 m} \Rightarrow \epsilon = \sqrt{\frac{\log \frac{2}{\delta}}{2m}}$$

. Then,

$$E_{S}[\Phi(S)] = E_{S}[\sup_{g \in \mathcal{G}} (E[g] - \hat{E}_{S}[g])] = E_{S}[\sup_{g \in \mathcal{G}} (E_{S'}[\hat{E}_{S'}[g] - \hat{E}_{S}[g])]$$

$$\leq E_{S,S'}[\sup_{g \in \mathcal{G}} (\hat{E}_{S'}[g] - \hat{E}_{S}[g])] = E_{S,S'}[\sup_{g \in \mathcal{G}} (\frac{1}{m} \sum_{i=1}^{m} g(z'_{i}) - g(z_{i}))]$$

$$= E_{S,S',\sigma}[\sup_{g \in \mathcal{G}} (\frac{1}{m} \sum_{g \in \mathcal{G}}^{m} \sigma_{i}(g(z'_{i}) - g(z_{i})))]$$

$$\leq E_{S',\sigma}[\sup_{g \in \mathcal{G}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i}g(z'_{i}))] + E_{S,\sigma}[\sup_{g \in \mathcal{G}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i}g(z_{i}))] = 2\Re_{m}(\mathcal{G})$$

We then note that, for sets S and S' differing by one point,

$$|\widehat{\mathfrak{R}}_{S}(\mathcal{G}) - \widehat{\mathfrak{R}}_{S'}(\mathcal{G})| \le \frac{1}{m}$$

so again by McDiarmid's we have

$$\mathbb{P}[\mathfrak{R}_m(\mathcal{G}) - \widehat{\mathfrak{R}}_{S'}(\mathcal{G}) \ge \epsilon] \le e^{-2m\epsilon^2}$$

hence

$$\frac{\delta}{2} = e^{-2m\epsilon^2} \Rightarrow \Phi(S) \le 2\widehat{\Re}_S(\mathcal{G}) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2m}}$$

Lemma 3.4: Let \mathcal{H} be a family of functions taking values in $\{-1,1\}$, and let \mathcal{G} be a family of loss functions "associated to \mathcal{H} for the zero-one loss", i.e. $\mathcal{G} = \{(x, y) \mapsto \chi_{h(x) \neq y} \mid h \in \mathcal{H}\}$. For any sample $S = ((x_1, y_1), ..., (x_m, y_m))$ of elements in $\mathcal{X} \times \{-1, 1\}$, let $S_{\mathcal{X}} = (x_1, ..., x_m)$. Then, $\widehat{\mathfrak{R}}_S(\mathcal{G}) = \frac{1}{2}\widehat{\mathfrak{R}}_{S_{\mathcal{X}}}(\mathcal{H})$

Proof: We have that

$$\widehat{\mathfrak{R}}_{S}(\mathcal{G}) = E_{\sigma}[\sup_{h \in \mathcal{H}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \chi_{h(x_{i}) \neq y_{i}})]$$
$$= E_{\sigma}[\frac{1}{m} \sup_{h \in \mathcal{H}} (\sum_{i=1}^{m} \sigma_{i} \frac{1 - h(x_{i})y_{i}}{2})] = E_{\sigma}[\frac{1}{2m} \sup_{h \in \mathcal{H}} (\sum_{i=1}^{m} \sigma_{i} - h(x_{i})y_{i})]$$
$$= \frac{1}{2} E_{\sigma}[\sup_{h \in \mathcal{H}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h(x_{i}))] = \frac{1}{2} \widehat{\mathfrak{R}}_{S_{\mathcal{X}}}(\mathcal{H})$$

Theorem 3.5: For a family of functions \mathcal{H} taking values in $\{-1, 1\}$ and \mathcal{D} a distribution over \mathcal{X} (the input space), then for any $\delta > 0$ and any $h \in \mathcal{X}$, over a sample S of size m drawn according to \mathcal{D} , we have

$$\mathbb{P}\left[R(h) \le \widehat{R}_{S}(h) + \Re_{m}(\mathcal{H}) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}\right] \ge 1 - \delta$$
$$\mathbb{P}\left[R(h) \le \widehat{R}_{S}(h) + \widehat{\Re}_{S}(\mathcal{H}) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2m}}\right] \ge 1 - \delta$$

Proof: We consider the functions $g: (x, y) \to 1_{h(x) \neq y}$ so that E[g(z)] = R(h) and $\widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m g(z_i)$. Further, $\widehat{\mathfrak{R}}_s(\mathcal{G}) = \frac{1}{2} \widehat{\mathfrak{R}}_{S_{\mathcal{X}}}(\mathcal{H})$ so that $\mathfrak{R}_m(\mathcal{G}) = \frac{1}{2} \mathfrak{R}_m(\mathcal{H})$. We then combine Theorem 3.3 with Lemma 3.4.

Note:

$$\widehat{\mathfrak{R}}_{S}(\mathcal{H}) = E_{\sigma}[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} -\sigma_{i}h(x_{i})] = -E_{\sigma}[\inf_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}h(x_{i})]$$

which then calculates the negative expectation over sigma of "empirical risk minimization", which is computationally hard for some \mathcal{H} .

Definition: The growth function $\Pi_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$ is defined as

$$\Pi_{\mathcal{H}}(m) = \max_{(x_1,...,x_m) \subset \mathcal{X}} |\{h(x_1),...,h(x_m)\} : h \in \mathcal{H}|$$

where each such distinct classification is referred to as a "dichotomy".

Maximal Inequality: Let $X_1, ..., X_n$ be $n \ge 1$ real-valued random variables such that, for any $j \in [n]$ and t > 0, $E[e^{tX_j} \le e^{\frac{t^2r^2}{2}}]$ for some r > 0. Then, $E[\max_{j \in [n]} X_j] \le r\sqrt{2\log n}$

Proof: We have that

$$e^{tE[\max_{j\in[n]} X_j]} \le E[\max_{j\in[n]} e^{tX_j}] \le \sum_{j=1}^n E[e^{tX_j}] \le ne^{\frac{t^2r^2}{2}}$$

then for $t = \frac{\sqrt{2\log n}}{r}$,

$$E[\max_{j \in [n]} X_j] \le \frac{\log n + \frac{t^2 r^2}{2}}{t} = r\sqrt{2\log n}$$

Corollary D.11: Let $X_1, ..., X_n$ be $n \ge 1$ real-valued random variables such that, for any $j \in [n]$, $X_j = \sum_{i=1}^m Y_{ij}$. Suppose that for fixed $j \in [n]$, Y_{ij} are independent, zero mean random variables taking values in $[-r_i, r_i]$ for some $r_i > 0$. Then, $E[\max_{j \in [n]} X_j] \le \sqrt{2\log(n) \sum_{i=1}^m r_i^2}$

Proof: We find that

$$E[e^{tX_j}] = \prod_i E[e^{tY_{ij}}] \le \prod_i e^{\frac{t^2(2r_i)^2}{8}}$$

hence

$$E[e^{tX_j}] \le \frac{t\sum_i r_i^2}{2}$$

so that we may apply the Maximal Inequality for $r=\sqrt{\sum_{i=1}^m r_i^2}$

Theorem 3.7 (Massart's Lemma): Let $A \subset \mathbb{R}^m$ be a finite set such that $r := \max_{x \in A} ||x||_2$. Then,

$$E_{\sigma}\left[\frac{1}{m}\sup_{x\in A}\sum_{i=1}^{m}\sigma_{i}x_{i}\right] \leq \frac{r\sqrt{2\log|A|}}{m}$$

where the $\sigma_i \in \{-1, 1\}$ are independent uniform random variables and $x_1, ..., x_m$ are components of x.

Proof: Apply Corollary D.11 to $X_i = \frac{1}{m} \sum_{j=1}^m \sigma_i x_j^i$ for $i \in [|A|]$, noting that each $\sigma_i x_j^i \in \{-|x_j^i|, |x_j^i|\}$ hence $\sum_{i=1}^m |x_i|^2 \leq r^2$.

Corollary 3.8: Let \mathcal{G} be a family of functions taking values in $\{-1, 1\}$. Then,

$$\mathfrak{R}_m(\mathcal{G}) \le \sqrt{\frac{2\log \Pi_{\mathcal{G}}(m)}{m}}$$

Proof: For a fixed sample $S = (z_1, ..., z_m)$, we have

$$\widehat{\mathfrak{R}}_{S}(\mathcal{G}) = E_{\sigma} \Big[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(z_{i}) \Big] \leq \frac{\sqrt{m} \sqrt{2 \log \Pi_{\mathcal{G}}(m)}}{m}$$

so the expectation is bounded similarly.

Corollary 3.9: For a family of functions \mathcal{H} valued in $\{-1,1\}$, for any $\delta > 0$ and any $h \in \mathcal{H}$,

$$\mathbb{P}\left[R(h) \le \widehat{R}_S(h) + \sqrt{\frac{2\log \Pi_{\mathcal{H}}(m)}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}\right] \ge 1 - \delta$$

where we use the Rademacher complexity bound from Corollary 3.8 and Theorem 3.5.

Definition: A set S of $m \ge 1$ points is "shattered" by a hypothesis set \mathcal{H} if \mathcal{H} realizes all possible dichotomies of S, i.e. $\Pi_{\mathcal{H}}(m) = 2^m$.

Definition (VC-dimension): The VC-dimension of a hypothesis set \mathcal{H} is the size of the largest set that can be shattered by \mathcal{H} , i.e.

$$\operatorname{VCdim}(\mathcal{H}) = \max\{m \in \mathbb{N} : \Pi_{\mathcal{H}}(m) = 2^m\}$$

Example: Consider the d + 1 points $x_i := (0, ..., 1, ..., 0)$ for $i \in \{0, 1, ..., d\}$ where the 1 is in the *i*-th position and x_0 is the origin. Further, let $w = (y_0, y_1, ..., y_d)$ where $y_i \in \{-1, 1\}$. Then, the hyperplane defined as

$$w \cdot x + \frac{y_0}{2} = 0$$

satisfies

$$\operatorname{sgn}(w \cdot x_i + \frac{y_0}{2}) = y_i$$

for $i \in \{1, ..., d\}$ and

$$\operatorname{sgn}(w \cdot x_0 + \frac{y_0}{2}) = y_0$$

hence the VC-dimension of hyperplanes in \mathbb{R}^d is at least d+1.

Definition: The convex hull $conv(\mathcal{X})$ of $\mathcal{X} \subset \mathbb{R}^N$ is defined as

$$\operatorname{conv}(\mathcal{X}) = \left\{ \sum_{i=1}^{|\mathcal{X}|} \alpha_i x_i \mid \sum_{i=1}^{|\mathcal{X}|} \alpha_i = 1, \ x_i \in \mathcal{X}, \ \alpha_i \ge 0 \right\}$$

Radon's Theorem: Any set \mathcal{X} of d + 2 points in \mathbb{R}^d can be partitioned into two subsets \mathcal{X}_1 and \mathcal{X}_2 such that $\operatorname{conv}(\mathcal{X}_1) \cap \operatorname{conv}(\mathcal{X}_2) \neq \emptyset$

Proof: Let $\mathcal{X} = \{x_1, ..., x_{d+2}\} \subset \mathbb{R}^d$. We find that the system

$$\sum_{i=1}^{d+2} \alpha_i x_i = 0, \ \sum_{i=1}^{d+2} \alpha_i = 0$$

has d+1 independent equations and d+2 unknowns, so that there exists a non-zero solution $\beta_1, ..., \beta_{d+2}$. Since $\sum_{i=1}^{d+2} \beta_i = 0$, the sets

$$\mathcal{J}_1 := \{ i \in [d+2] \mid \beta_i \le 0 \}, \ \mathcal{J}_2 := \{ i \in [d+2] \mid \beta_i > 0 \}$$

are nonempty and they satisfy

$$\sum_{i \in \mathcal{J}_1} \beta_i x_i = -\sum_{i \in \mathcal{J}_2} \beta_i x_i$$

10

so that

$$\beta := \sum_{i \in \mathcal{J}_1} \beta_i \Rightarrow \frac{1}{\beta} \sum_{i \in \mathcal{J}_1} \beta_i x_i$$

belongs in the convex hulls of both \mathcal{X}_1 and \mathcal{X}_2 .

Theorem 3.17 (Sauer's Lemma): Let \mathcal{H} be a hypothesis set such that $\operatorname{VCdim}(\mathcal{H}) = d$. Then, for any $m \in \mathbb{N}$, $\Pi_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} {m \choose i}$

Proof: We proceed by induction. The statement holds for m = 1 and d = 1or d = 0. Then, assume the statement holds for (m - 1, d) and (m - 1, d - 1). We then fix a sample S of size m given by $S = (x_1, ..., x_m)$. Let \mathcal{G} denote the space of hypotheses due to S. Identifying each $g \in \mathcal{G}$ with those x_i classified as 1 (rather than -1), let \mathcal{G}_1 denote the space of hypotheses due to $(x_1, ..., x_{m-1})$ and let \mathcal{G}_2 denote those $g \in \mathcal{G}$ such that if $Z \subset \{0, 1\}^{m-1}$ is expressed among the $\{x_1, ..., x_{m-1}\}$, so is $Z \cup x_m$. Hence, $|\mathcal{G}| = |\mathcal{G}_1| + |\mathcal{G}_2|$. Since \mathcal{G}_1 has VC dimension at most d while \mathcal{G}_2 has VC dimension at most d - 1 (else \mathcal{G} would also shatter a set of size d + 1 by adding x_m). Therefore,

$$|\mathcal{G}| \le \sum_{i=0}^{d-1} \binom{m-1}{i} + \sum_{i=0}^{d} \binom{m-1}{i}$$
$$= \sum_{i=1}^{d} \binom{m-1}{i-1} + \sum_{i=1}^{d} \binom{m-1}{i} = \sum_{i=0}^{d} \binom{m}{i}$$

Corollary 3.18: Let \mathcal{H} be a hypothesis set such that $\operatorname{VCdim}(\mathcal{H}) = d$. Then, for any $m \ge d$, $\Pi_{\mathcal{H}}(m) \le \left(\frac{em}{d}\right)^d = O(m^d)$

Proof: From Sauer's Lemma, we have that

$$\Pi_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} \binom{m}{i} \leq \sum_{i=0}^{d} \binom{m}{i} \left(\frac{m}{d}\right)^{d-i} \leq \sum_{i=0}^{m} \binom{m}{i} \left(\frac{m}{d}\right)^{d-i}$$
$$= \left(\frac{m}{d}\right)^{d} \sum_{i=0}^{m} \binom{m}{i} \left(\frac{d}{m}\right)^{i} = \left(\frac{m}{d}\right)^{d} (1+\frac{d}{m})^{m} \leq \left(\frac{em}{d}\right)^{d}$$

Corollary 3.19: Let \mathcal{H} be a family of functions taking values in $\{-1, 1\}$ with VC-dimension d. Then, for any $\delta > 0$,

$$\mathbb{P}\left[R(h) \le \widehat{R}_S(h) + \sqrt{\frac{2d\log\frac{em}{d}}{m}} + \sqrt{\frac{\log\frac{1}{\delta}}{2m}}\right] \ge 1 - \delta$$

Proof: Combine Corollary 3.18 and Corollary 3.9.

Definition (Relative Entropy): The relative entropy (or Kullback Leibler Divergence) of 2 distributions p and q is denoted D(p||q), and is defined by

$$D(p||q) = E_p \left[\log \frac{p(x)}{q(x)} \right] = \sum_{x \in \mathcal{X}} p(x) \log(\frac{p(x)}{q(x)})$$

Sanov's Theorem (D.3): Let $X_1, ..., X_m$ be independent variables drawn according to some distribution \mathcal{D} with mean p and support included in [0, 1]. Then, for $\hat{p} := \frac{1}{m} \sum_{i=1}^{m} X_i$ and any $q \in [0, 1]$, we have

$$\mathbb{P}[\widehat{p} \ge q] \le e^{-mD(p||q)}$$

Proof: We have

$$\mathbb{P}[\hat{p} \ge q] \le e^{-tmq} E[e^{tm\hat{p}}] = e^{-tmq} \prod_{i=1}^{m} E[e^{tX_i}] \le e^{-tmq} \left(1 - p + pe^t\right)^m$$
$$= \left((1 - p)e^{-q\log\frac{q(1-p)}{p(1-q)}} + pe^{(1-q)\log\frac{q(1-p)}{p(1-q)}}\right)^m = e^{m(-q\log\frac{q}{p} + (q-1)\log\frac{1-q}{1-p})}$$

where $t \ge 0$ is used for the Chernoff bound

Theorem D.4: Let $X_1, ..., X_m$ be independent random variables drawn according to some distribution \mathcal{D} with mean p and support included in [0, 1]. Then, for any $\gamma \in [0, \frac{1}{p} - 1]$, for $\hat{p} := \frac{1}{m} \sum_{i=1}^{m} X_i$, we have

$$\mathbb{P}[\widehat{p} \ge (1+\gamma)p] \le e^{\frac{-mp\gamma^2}{3}}$$

and

$$\mathbb{P}[\widehat{p} \le (1-\gamma)p] \le e^{\frac{-mp\gamma^2}{2}}$$

 $\begin{aligned} Proof: \ \text{For } q &= (1+\gamma)p, \\ D(q||p) &= (1+\gamma)p\log\frac{p}{(1+\gamma)p} + (1-(1+\gamma)p)\log\frac{1-p}{1-(1+\gamma)p} \\ &= -p(1+\gamma)\log(1+\gamma) + (1-(1+\gamma)p)\log(1+\frac{\gamma p}{1-(1+\gamma)p}) \\ &\leq (1+\gamma)p\frac{-\gamma}{1+\frac{\gamma}{2}} + (1-p-\gamma p)\frac{\gamma p}{1-p-\gamma p} = -\gamma p\Big(1+\frac{\frac{\gamma}{2}}{1+\frac{\gamma}{2}}-1\Big) = -\frac{\gamma^2 p}{2+\gamma} \leq -\frac{\gamma^2 p}{3} \\ \text{For } q &= (1-\gamma)p, \text{ we have} \end{aligned}$

$$D(q||p) = (1-\gamma)p\log\frac{p}{(1-\gamma)p} + (1-(1-\gamma)p)\log\frac{1-p}{1-(1-\gamma)p}$$
$$= -p(1-\gamma)\log(1-\gamma) + (1-(1-\gamma)p)\log(1-\frac{\gamma p}{1-(1-\gamma)p})$$
$$\leq (1-\gamma)p\frac{\gamma}{1-\frac{\gamma}{2}} + (1-p+\gamma p)\frac{-\gamma p}{1-p+\gamma p} = \gamma p(\frac{1-\gamma}{1-\frac{\gamma}{2}} - 1) = -\frac{\gamma^2 p}{2-\gamma} \leq -\frac{\gamma^2 p}{2}$$

Theorem 3.20: Let \mathcal{H} be a hypothesis set with VC dimension d > 1. Then, for any $m \geq 1$ and any learning algorithm \mathcal{A} , there exists a distribution \mathcal{D} over \mathcal{X} and a target function $f \in \mathcal{H}$ such that

$$\mathbb{P}[R_{\mathcal{D}}(h_S, f) > \frac{d-1}{32m}] \ge \frac{1}{100}$$

Proof: Let $\overline{\mathcal{X}} = \{x_0, ..., x_{d-1}\} \subset \mathcal{X}$ be shattered by \mathcal{H} . For any $\epsilon > 0$, choose \mathcal{D} such that its support is reduced to $\overline{\mathcal{X}}$ and so that one point (x_0) has probability $1 - 8\epsilon$ with the rest of the mass distributed uniformly, i.e. $\mathbb{P}_{\mathcal{D}}[x_0] = 1 - 8\epsilon$ and for any $i \in [d-1]$, $\mathbb{P}_{\mathcal{D}}[x_i] = \frac{8\epsilon}{d-1}$. Without loss of generality, \mathcal{A} makes no error on x_0 . For a sample S, let \overline{S} denote the set of its elements falling in $\{x_1, ..., x_{d-1}\}$ and let S denote samples S of size m such that $|\overline{S}| \leq \frac{d-1}{2}$. Fix $S \in S$ and consider the uniform distribution \mathcal{U} over all labelings $f: \overline{\mathcal{X}} \to \{0, 1\}$ (which are all in \mathcal{H} since the set is shattered). Then,

$$E_{f \sim \mathcal{U}}[R_{\mathcal{D}}(h_S, f)] = \sum_f \sum_{x \in \overline{\mathcal{X}}} \mathbf{1}_{h_S(x) \neq f(x)} \mathbb{P}[x] \mathbb{P}[f] \ge \sum_f \sum_{x \notin \overline{S}} \mathbf{1}_{h_S(x) \neq f(x)} \mathbb{P}[x] \mathbb{P}[f]$$
$$= \frac{1}{2} \sum_{x \notin \overline{S}} \mathbb{P}[x] \ge \frac{1}{2} \frac{d-1}{2} \frac{8\epsilon}{d-1} = 2\epsilon \Rightarrow E_{f \sim \mathcal{U}}[E_{S \in \mathcal{S}}[R_{\mathcal{D}}(h_S, f)]] \ge 2\epsilon$$

Hence $E_{S \in S}[R_{\mathcal{D}}(h_S, f_0)] \ge 2\epsilon$ for at least one labeling $f_0 \in \mathcal{H}$. Since $R_{\mathcal{D}}(h_S, f_0) \le \mathbb{P}_{\mathcal{D}}[\overline{\mathcal{X}} - \{x_0\}]$, we have that

$$E_{S\in\mathcal{S}}[R_{\mathcal{D}}(h_S, f_0)] = \sum_{\substack{S:R_{\mathcal{D}}(h_S, f_0) \ge \epsilon}} R_{\mathcal{D}}(h_S, f_0) \mathbb{P}[R_{\mathcal{D}}(h_S, f_0)] + \sum_{\substack{S:R_{\mathcal{D}}(h_S, f_0) \ge \epsilon}} R_{\mathcal{D}}(h_S, f_0) \mathbb{P}[R_{\mathcal{D}}(h_S, f_0)]$$
$$\leq \mathbb{P}_{\mathcal{D}}[\overline{\mathcal{X}} - \{x_0\}] \mathbb{P}_{S\in\mathcal{S}}[R_{\mathcal{D}}(h_S, f_0) \ge \epsilon] + \epsilon(1 - \mathbb{P}_{S\in\mathcal{S}}[R_{\mathcal{D}}(h_S, f_0) \ge \epsilon])$$
$$\leq 7\epsilon \mathbb{P}_{S\in\mathcal{S}}[R_{\mathcal{D}}(h_S, f_0) \ge \epsilon] + \epsilon \Rightarrow \frac{\mathbb{P}[\mathcal{S}]}{7} \le \frac{1}{7} \le \mathbb{P}_{S\in\mathcal{S}}[R_{\mathcal{D}}(h_S, f_0) \ge \epsilon]$$

Then, for a set $S = (x_1, ..., x_m)$ of size m, define $S_m = \sum_{i=1}^m \mathbf{1}_{x_i \in \overline{\mathcal{X}}}$. Since each $\mathbf{1}_{x_i \in \overline{\mathcal{X}}}$ has an expected value of 8ϵ , the mean is $8\epsilon m$ in this case. Then, for any $\gamma > 0$, we use Theorem D.4 as

$$\mathbb{P}[S_m \ge 8\epsilon m(1+\gamma)] \le e^{-8\epsilon m\frac{\gamma^2}{3}}$$

hence

$$\epsilon = \frac{(d-1)}{32m}, \ \gamma = 1 \Rightarrow 1 - \mathbb{P}[\mathcal{S}] = \mathbb{P}[S_m \ge \frac{d-1}{2}] \le e^{-\frac{d-1}{12}} \le e^{-\frac{1}{12}} \le 1 - 7\delta$$

for $\delta \leq \frac{1}{100} \leq \frac{1-e^{-\frac{1}{12}}}{7}$. Then, $1 - \mathbb{P}[\mathcal{S}] \leq 1 - 7\delta$ so

$$7\delta \leq \mathbb{P}[S] \Rightarrow \delta \leq \frac{\mathbb{P}[S]}{7} \leq \mathbb{P}_{S \in S}[R_{\mathcal{D}}(h_S, f_0) \geq \epsilon]$$

Note: Since there exists a distribution over \mathcal{X} for which the error of the hypothesis returned by \mathcal{A} (with respect to a target function f) is bounded by $C \cdot \frac{d}{m}$, infinite VC-dimension indicates that PAC-learning in the realizable case is not possible.

Slud's Inequality Let X be a random variable following the binomial distribution B(m,p) and let k be an integer such that $p \leq \frac{1}{4}$ and $k \geq mp$ or $p \leq \frac{1}{2}$ and $mp \leq k \leq m(1-p)$. Then,

$$\mathbb{P}[X \ge k] \ge \mathbb{P}\left[N \ge \frac{k - mp}{\sqrt{mp(1 - p)}}\right]$$

where N is in standard normal form.

Normal distribution tails: Lower bound: If N is a random variable following the standard normal distribution, then for u > 0 we have

$$\mathbb{P}[N \ge u] \ge \frac{1}{2} \left(1 - \sqrt{1 - e^{-u^2}} \right)$$

Exercise D.3: Let x_A and x_B be random variables (coins), with $\mathbb{P}[x_A = 0] = \frac{1}{2} - \frac{\epsilon}{2}$ and $\mathbb{P}[x_B = 0] = \frac{1}{2} + \frac{\epsilon}{2}$, where $0 < \epsilon < 1$ is a small positive number, 0 denotes heads and 1 denotes tails. Consider selecting a coin $x \in \{x_A, x_B\}$ uniformly at random, tossing it m times, and predicting which coin was tossed based on the sequence of 0s and 1s obtained.

a) Let S be a sample of size m. Consider playing the above game according to the decision rule $f_o: \{0,1\}^m \to \{x_A, x_B\}$ defined by $f_o(S) = x_A$ if and only if $N(S) < \frac{m}{2}$, where N(S) is the number of 0's in sample S. Suppose m is even. Then, this rule fails in the case that $x = x_A$ yet at least half of the flips were heads. Hence,

$$\operatorname{error}(f_0) = E_x [\mathbb{P}_{\mathcal{D}_x^m} [f_o(S) \neq x]]$$
$$= \mathbb{P}[x = x_A] \mathbb{P}_{\mathcal{D}_{x_A}^m} [f_o(S) \neq x_A] + \mathbb{P}[x = x_B] \mathbb{P}_{\mathcal{D}_{x_B}^m} [f_o(S) \neq x_B]$$
$$\geq \frac{1}{2} \mathbb{P} \left[N(S) \geq \frac{m}{2} \mid x = x_A \right]$$

b) Again assuming m is even, we find that N(S) follows the binomial distribution B(m,p) for $p = \frac{1}{2} - \frac{\epsilon}{2}$, where $m(\frac{1}{2} - \frac{\epsilon}{2}) \leq \frac{m}{2} \leq m(\frac{1}{2} + \frac{\epsilon}{2})$. Hence, Slud's Inequality implies

$$\mathbb{P}[N(S) \ge \frac{m}{2}] \ge \mathbb{P}\left[N \ge \frac{\frac{m}{2} - m(\frac{1}{2} - \frac{\epsilon}{2})}{\sqrt{m(\frac{1}{2} - \frac{\epsilon}{2})(\frac{1}{2} + \frac{\epsilon}{2})}}\right] = \mathbb{P}\left[N \ge \frac{\epsilon\sqrt{m}}{\sqrt{1 - \epsilon^2}}\right]$$

to which we can apply the lower bound for normal distribution tails as

$$\mathbb{P}\left[N \ge \frac{\epsilon\sqrt{m}}{\sqrt{1-\epsilon^2}}\right] \ge \frac{1}{2}\left(1 - \sqrt{1 - e^{-\frac{m\epsilon^2}{1-\epsilon^2}}}\right)$$

hence

$$\operatorname{error}(f_o) \ge \frac{1}{4} \left(1 - \sqrt{1 - e^{-\frac{m\epsilon^2}{1 - \epsilon^2}}} \right)$$

c) If *m* is odd, then note that f_o fails in the case that $N(S) \geq \frac{m}{2} \iff N(S) \geq \lceil \frac{m}{2} \rceil$. Hence, N(S) effectively follows a binomial distribution (by adding an arbitrary element to *S*) B(m+1,p) for $p = \frac{1}{2} - \frac{\epsilon}{2}$, where $(m+1)(\frac{1}{2} - \frac{\epsilon}{2}) \leq \lceil \frac{m}{2} \rceil \leq (m+1)(\frac{1}{2} + \frac{\epsilon}{2})$. Using Slud's Inequality and the lower bound for normal distribution with $p = \frac{1}{2} - \frac{\epsilon}{2}$, we have

$$\frac{1}{2}\mathbb{P}\Big[N(S) \ge \frac{m}{2}\Big] \ge \frac{1}{2}\mathbb{P}\left[N \ge \frac{\frac{m+1}{2} - (m+1)p}{\sqrt{(m+1)p(1-p)}}\right] = \frac{1}{2}\mathbb{P}\left[N \ge \frac{\epsilon\sqrt{m+1}}{\sqrt{1-\epsilon^2}}\right]$$
$$\ge \frac{1}{4}\Big(1 - \sqrt{1 - e^{-\frac{\epsilon^2(m+1)}{1-\epsilon^2}}}\Big) = \frac{1}{4}\Big(1 - \sqrt{1 - e^{-\frac{2\left\lceil\frac{m}{2}\right\rceil\epsilon^2}{1-\epsilon^2}}}\Big)$$

Since the rightmost expression holds as the same bound in the even case, both m odd and even share this bound.

d) If the error of f_o is to be at most δ , where $0 < \delta < \frac{1}{4}$, then

$$\begin{split} \delta &\geq \frac{1}{4} \left(1 - \sqrt{1 - e^{-\frac{2\left\lceil \frac{m}{2} \rceil \epsilon^2}{1 - \epsilon^2}}} \right) \Rightarrow (1 - 4\delta)^2 \leq 1 - e^{-\frac{2\left\lceil \frac{m}{2} \rceil \epsilon^2}{1 - \epsilon^2}} \\ \Rightarrow &-\frac{2\left\lceil \frac{m}{2} \rceil \epsilon^2}{1 - \epsilon^2} \leq \log \left(1 - (1 - 4\delta)^2 \right) \Rightarrow -\frac{1 - \epsilon^2}{2\epsilon^2} \log \left(1 - (1 - 4\delta)^2 \right) \leq \left\lceil \frac{m}{2} \right\rceil \leq \frac{m + 1}{2} \\ \Rightarrow &m \geq \frac{1 - \epsilon^2}{\epsilon^2} \log \left(\frac{1}{1 - (1 - 4\delta)^2} \right) - 1 \end{split}$$

Note that $\epsilon \to 0 \Rightarrow m \to \infty$

e) Now consider an arbitrary decision rule $f : \{0,1\}^m \to \{x_A, x_B\}$. Note that, if $f(S') = x_A$ on a particular outcome S' with $N(S) \ge \frac{m}{2}$ then the error of f on S' is at least $\frac{1}{2}\mathbb{P}\Big[N(S) < \frac{m}{2} \mid x = x_A\Big] \ge \frac{1}{2}\mathbb{P}\Big[N(S) \ge \frac{m}{2} \mid x = x_A\Big]$. Similarly, if $f(S') = x_A$ on an outcome S' with $N(S) < \frac{m}{2} - 1$, f errors on S' with at least $\frac{1}{2}\mathbb{P}\Big[N(S) \ge \frac{m}{2} - 1 \mid x = x_A\Big] \ge \frac{1}{2}\mathbb{P}\Big[N(S) \ge \frac{m}{2} \mid x = x_A\Big]$, hence

$$\operatorname{error}(f) \ge \frac{1}{2} \mathbb{P}\Big[N(S) \ge \frac{m}{2} \mid x = x_A\Big]$$

so that the lower bound in part d applies to all decision rules.

Lemma 3.21: Let α be a uniformly distributed random variable taking values in $\{\alpha_{-}, \alpha_{+}\}$, where $\alpha_{-} = \frac{1}{2} - \frac{\epsilon}{2}$ and $\alpha_{+} = \frac{1}{2} + \frac{\epsilon}{2}$. Let *S* be a sample of $m \geq 1$ random variables $X_{1}, ..., X_{m}$ taking values in $\{0, 1\}$ and drawn i.i.d. according to the distribution \mathcal{D}_{α} defined by $\mathbb{P}_{\mathcal{D}_{\alpha}}[X = 1] = \alpha$. Then, if $h : \mathcal{X}^{m} \to \{\alpha_{-}, \alpha_{+}\}$, we have

$$E_{\alpha}[\mathbb{P}_{\mathcal{D}_{\alpha}^{m}}[h(S) \neq \alpha]] \ge \Phi\left(2\left\lceil \frac{m}{2} \right\rceil, \epsilon\right)$$

for $\Phi(m,\epsilon) = \frac{1}{4} \left(1 - \sqrt{1 - e^{-\frac{m\epsilon^2}{1 - \epsilon^2}}} \right)$ for all m and ϵ .

Proof: This follows from the previous exercise.

Lemma 3.22: Let Z be a random variable taking values in [0, 1]. Then, for any $\gamma \in [0, 1)$, we have

$$\mathbb{P}[Z > \gamma] \ge \frac{E[Z] - \gamma}{1 - \gamma} > E[Z] - \gamma$$

Proof: We find that

$$E[Z] \le (1)(\mathbb{P}[Z > \gamma]) + (\gamma)(\mathbb{P}[Z \le \gamma])$$
$$= \mathbb{P}[Z > \gamma] + (\gamma)(1 - \mathbb{P}[Z > \gamma]) \Rightarrow E[Z] - \gamma \le \mathbb{P}[Z > \gamma](1 - \gamma)$$

Theorem 3.23 (Lower bound, non-realizable case): let \mathcal{H} be a hypothesis set with VC-dimension d > 1. Then, for any $m \geq 1$ and any learning algorithm \mathcal{A} , there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0, 1\}$ such that

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[R_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} R_{\mathcal{D}}(h) > \sqrt{\frac{d}{320m}} \right] \ge \frac{1}{64}$$

or equivalently, for any learning algorithm, the sample complexity verifies

$$m \ge \frac{d}{320\epsilon^2}$$

Proof: Let $\overline{\mathcal{X}} = \{x_1, ..., x_d\} \subset \mathcal{X}$ be a set shattered by \mathcal{H} . For any $\alpha \in [0, 1]$ and any vector $\sigma = (\sigma_1, ..., \sigma_d)^T \in \{-1, 1\}^d$, we define a distribution \mathcal{D}_{σ} with support $\overline{\mathcal{X}} \times \{0, 1\}$ as follows: for any $i \in [d]$,

$$\mathbb{P}_{\mathcal{D}_{\sigma}}[(x_i, 1)] = \frac{1}{d} \left(\frac{1}{2} + \frac{\sigma_i \alpha}{2} \right)$$

For $i \in [d]$, we define the Bayes classifier as

$$h_{\mathcal{D}_{\sigma}}^{*}(x_{i}) = \operatorname{argmax}_{y \in \{0,1\}} \mathbb{P}[y \mid x_{i}]$$

Note that $h^*_{\mathcal{D}_{\sigma}}$ is in \mathcal{H} since $\overline{\mathcal{X}}$ is shattened. Further, for all $h \in \mathcal{H}$,

$$R_{\mathcal{D}_{\sigma}}(h) - R_{\mathcal{D}_{\sigma}}(h^{*}_{\mathcal{D}_{\sigma}}) = E_{\mathcal{D}_{\sigma}}\left[\frac{1}{d}\sum_{x\in\overline{\mathcal{X}}}1_{h(x)\neq y}\right] - E_{\mathcal{D}_{\sigma}}\left[\frac{1}{d}\sum_{x\in\overline{\mathcal{X}}}1_{h^{*}_{\mathcal{D}_{\sigma}}(x)\neq y}\right]$$
$$= \frac{1}{d}\sum_{x\in\overline{\mathcal{X}}}\left(\left(\frac{1}{2} + \frac{\alpha}{2}\right) - \left(\frac{1}{2} - \frac{\alpha}{2}\right)\right)1_{h(x)\neq h^{*}_{\mathcal{D}_{\sigma}}(x)} = \frac{\alpha}{d}\sum_{x\in\overline{\mathcal{X}}}1_{h(x)\neq h^{*}_{\mathcal{D}_{\sigma}}(x)}$$

Let h_S denote the hypothesis returned by the learning algorithm \mathcal{A} after receiving the labeled sample S drawn according to \mathcal{D}_{σ} . Let $|S|_x$ denote the number of occurrences of a point x in S. Let \mathcal{U} denote the uniform distribution over $\{-1,1\}^d$. Then,

$$E_{S\sim\mathcal{D}_{\sigma}^{m}}\left[\frac{1}{\alpha}\left[R_{\mathcal{D}_{\sigma}}(h_{S})-R_{\mathcal{D}_{\sigma}}(h_{\mathcal{D}_{\sigma}}^{*})\right]\right] = \frac{1}{d}\sum_{x\in\overline{\mathcal{X}}}E_{S\sim\mathcal{D}_{\sigma}^{m}}\left[1_{h_{S}(x)\neq h_{\mathcal{D}_{\sigma}}^{*}(x)\right]$$
$$= \frac{1}{d}\sum_{x\in\overline{\mathcal{X}}}E_{\sigma\sim\mathcal{U}}\left[\mathbb{P}_{S\sim\mathcal{D}_{\sigma}^{m}}[h_{S}(x)\neq h_{\mathcal{D}_{\sigma}}^{*}(x)]\right]$$
$$= \frac{1}{d}\sum_{x\in\overline{\mathcal{X}}}\sum_{n=0}^{m}E_{\sigma\sim\mathcal{U}}\left[\mathbb{P}_{S\sim\mathcal{D}_{\sigma}^{m}}[h_{S}(x)\neq h_{\mathcal{D}_{\sigma}}^{*}(x)\mid|S|_{x}=n]\right]\mathbb{P}[|S|_{x}=n]$$
$$\geq \frac{1}{d}\sum_{x\in\overline{\mathcal{X}}}\sum_{n=0}^{m}\Phi(n+1,\alpha)\mathbb{P}[|S|_{x}=n]\geq \frac{1}{d}\sum_{x\in\overline{\mathcal{X}}}\Phi\left(\frac{m}{d}+1,\alpha\right)=\Phi\left(\frac{m}{d}+1,\alpha\right)$$

Hence there exists $\sigma \in \{-1, 1\}^d$ such that

$$E_{S \sim \mathcal{D}_{\sigma}^{m}} \left[\frac{1}{\alpha} [R_{\mathcal{D}_{\sigma}}(h_{S}) - R_{\mathcal{D}_{\sigma}}(h_{\mathcal{D}_{\sigma}}^{*})] \right] > \Phi\left(\frac{m}{d} + 1, \alpha\right)$$

By Lemma 3.22, for the same σ and any $\gamma \in [0, 1]$ we have

$$\mathbb{P}_{S \sim \mathcal{D}_{\sigma}^{m}} \left[\frac{1}{\alpha} [R_{\mathcal{D}_{\sigma}}(h_{S}) - R_{\mathcal{D}_{\sigma}}(h_{\mathcal{D}_{\sigma}}^{*})] \ge \gamma u \right] > (1 - \gamma)u$$

1

for $u = \Phi\left(\frac{m}{d} + 1, \alpha\right)$. If we bound $\delta \leq (1 - \gamma)u$ and $\epsilon \leq \gamma \alpha u$, then $\mathbb{P}_{S \sim \mathcal{D}_{\sigma}^{m}}\left[R_{\mathcal{D}_{\sigma}}(h_{S}) - R_{\mathcal{D}_{\sigma}}(h_{\mathcal{D}_{\sigma}}^{*}) > \epsilon\right] > \delta$

For $\gamma = 1 - 8\delta$, we have

$$\delta \le (1 - \gamma)u \iff u \ge \frac{1}{8}$$
$$\iff \frac{1}{4} \left(1 - \sqrt{1 - e^{-\frac{\left(\frac{m}{d} + 1\right)\alpha^2}{1 - \alpha^2}}} \right) \ge \frac{1}{8} \iff \frac{1}{4} \ge 1 - e^{-\frac{\left(\frac{m}{d} + 1\right)\alpha^2}{1 - \alpha^2}}$$
$$\iff -\frac{\left(\frac{m}{d} + 1\right)\alpha^2}{1 - \alpha^2} \ge \log \frac{3}{4} \iff \frac{m}{d} \le \frac{1 - \alpha^2}{\alpha^2} \log \frac{4}{3} - 1$$

Hence $\alpha = \frac{8\epsilon}{1-8\delta}$ gives $\epsilon = \frac{\gamma\alpha}{8}$ and

$$\frac{m}{d} \le \left(\frac{(1-8\delta)^2}{64\epsilon^2} - 1\right)\log\frac{4}{3} - 1 := f\left(\frac{1}{\epsilon^2}\right)$$

Then, to obtain a bound of the form $\frac{m}{d} \leq \frac{\omega}{\epsilon^2}$, since $\epsilon \leq \frac{1}{64}$, it suffices to set $\frac{\omega}{(\frac{1}{64})^2} = f\left(\frac{1}{(\frac{1}{64})^2}\right)$. Hence, for $\delta = \frac{1}{64}$, we have $\omega = \frac{1}{(64)^2}((7^2 - 1)\log\frac{4}{3} - 1) \approx \frac{1}{320}$ so that $\epsilon^2 \leq \frac{1}{320(m/d)}$ suffices.

Ch. 3 Exercises.

3.1. Let \mathcal{H} be the set of intervals in \mathbb{R} . The VC-dimension of \mathcal{H} is 2, and its growth function satisfies $\Pi_{\mathcal{H}}(m) \leq \sum_{i=0}^{m} (m-i+1) = m^2 + m - \sum_{i=0}^{m}$.

3.2. Let \mathcal{H} be the family of threshold functions over the real line: $\mathcal{H} = \{x \mapsto 1_{x \leq \theta} \mid \theta \in \mathbb{R}\} \cup \{x \mapsto 1_{x \geq \theta} \mid \theta \in \mathbb{R}\}$. In this case, given m points in \mathbb{R} , we can exclude or include all, as well as include from opposite sides of the real line. Hence, $\Pi_m(\mathcal{H}) \leq 2 + (m-1)(2) = 2m$. Hence,

$$\Re_m(\mathcal{G}) \le \sqrt{\frac{2\log(2m)}{m}}$$

3.3. We define a linearly separable labeling of a set \mathcal{X} of vectors in \mathbb{R}^d as a classification of \mathcal{X} into two sets \mathcal{X}^+ and \mathcal{X}^- with $\mathcal{X}^+ = \{x \in \mathcal{X} \mid w \cdot x > 0\}$ and $\mathcal{X}^- = \{x \in \mathcal{X} \mid w \cdot x < 0\}$ for some $w \in \mathbb{R}^d$. Let $\mathcal{X} = \{x_1, ..., x_m\}$ be a subset of \mathbb{R}^d .

(a) Let $\{\mathcal{X}^+, \mathcal{X}^-\}$ be a dichotomy of \mathcal{X} and let $x_{m+1} \in \mathbb{R}^d$. Suppose that $\{\mathcal{X}^+, \mathcal{X}^-\}$ is linearly separable by a hyperplane

$$w \cdot x = 0, \ w \in \mathbb{R}^d$$

passing through the origin and $x_{m+1} = (x_{m+1}^1, ..., x_{m+1}^d)$. Then, since

$$\sum_{i=1}^d x_{m+1}^i w_i = 0$$

there exist $\epsilon_1, \epsilon_2 \in \mathbb{R}$ and $j, k \in \{1, ..., d\}$ for which $w' := (w_1, ..., w_j \pm \epsilon_1, ..., w_d)$ and $w'' := (w_1, ..., w_k \pm \epsilon_1, ..., w_d)$ satisfy

$$(w_j \pm \epsilon_1) x_{m+1}^j + \sum_{i \neq j} x_{m+1}^i w_i > 0$$

LUCAS TUCKER

$$(w_k \pm \epsilon_2) x_{m+1}^j + \sum_{i \neq k} x_{m+1}^i w_i < 0$$

and $w \cdot x = 0$ still separates $\{\mathcal{X}^+, \mathcal{X}^-\}$.

Conversely, if $\{\mathcal{X}^+, \mathcal{X}^- \cup \{x_{m+1}\}\}$ and $\{\mathcal{X}^+ \cup \{x_{m+1}\}, \mathcal{X}^-\}$ are linearly separable by hyperplanes, those hyperplanes separate $\{\mathcal{X}^+, \mathcal{X}^-\}$.

b) Let $\mathcal{X} = \{x_1, ..., x_m\}$ be a subset of \mathbb{R}^d such that any k-element subset of \mathcal{X} with $k \leq d$ is linearly independent. Let C(m, d) denote the number of linearly separable labelings of \mathcal{X} . Then, we find that C(m+1, d) counts the linearly separable labelings in the m case for \mathbb{R}^d , and also double counts those cases in which the hyperplane (given by a vector $w \in \mathbb{R}^d$) can intersect the m+1-th vector. In such cases, the m + 1-th vector may belong to either \mathcal{X}^+ or \mathcal{X}^- by part (a), thereby defining two linearly separable labelings. Hence, C(m+1, d) = C(m, d) + C(m, d-1). For m = 1, we have 1 = C(2, 1) = C(1, 1) + C(1, 0) = 1 + 0. We may now inductively assume

$$C(m,d) = 2\sum_{k=0}^{d-1} \binom{m-1}{k}, \ C(m,d-1) = 2\sum_{k=0}^{d-2} \binom{m-1}{k}$$

Then,

$$C(m+1,d) = 2\sum_{k=0}^{d-1} \binom{m-1}{k} + 2\sum_{k=0}^{d-2} \binom{m-1}{k}$$
$$= 2\sum_{k=0}^{d-1} \binom{m-1}{k} + 2\sum_{k=0}^{d-1} \binom{m-1}{k-1} = 2\sum_{k=0}^{d-1} \binom{m}{k}$$

c) Let $f_1, ..., f_p$ be p functions mapping \mathbb{R}^d to \mathbb{R} . Define \mathcal{F} as the family of classifiers based on linear combinations of the functions:

$$\mathcal{F} = \left\{ x \mapsto \operatorname{sgn}\left(\sum_{k=1}^{p} a_k f_k(x)\right) : a_1, ..., a_p \in \mathbb{R} \right\}$$

Define Ψ by $\Psi(x) = (f_1(x), ..., f_p(x))$. Assume that there exists $x_1, ..., x_m \in \mathbb{R}^d$ such that every *p*-subset of $\{\Psi(x_1), ..., \Psi(x_m)\}$ is linearly independent. In this case,

$$\Pi_{\mathcal{F}}(m) = \sup_{\{x_1,...,x_m\} \subset \mathbb{R}^d} |\{g(x_1),...,g(x_m) : g \in \mathcal{F}\}|$$

so since each set $\{g(x_1), ..., g(x_m)\}$ represents a linearly separable labeling of the *p*-dimensional points $\{\Psi(x_1), ..., \Psi(x_m)\}$,

$$\sup_{\{x_1,...,x_m\} \subset \mathbb{R}^d} |\{g(x_1),...,g(x_m) : g \in \mathcal{F}\}| = 2\sum_{i=0}^{p-1} \binom{m-1}{i}$$

using part (b) and . Therefore,

$$\Pi_{\mathcal{F}}(m) = 2\sum_{i=0}^{p-1} \binom{m-1}{i}$$

3.11. For an input space $\mathcal{X} := \mathbb{R}^{n_1}$, we consider the family of regularized neural networks defined by the following set of functions mapping \mathcal{X} to \mathbb{R} :

$$\mathcal{H} = \left\{ x \mapsto \sum_{j=1}^{n_2} w_j \sigma(u_j \cdot x) : ||w||_1 \le \Lambda', ||u_j||_2 \le \Lambda, \text{ for any } j \in [n_2] \right\}$$

where σ is an *L*-Lipschitz function (e.g. σ could be the sigmoid function which is 1-Lipschitz).

a) We find that

$$\widehat{\mathfrak{R}}_{S}(\mathcal{H}) = E_{\sigma} \Big[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h(x_{i}) \Big] = E_{\sigma} \Big[\sup_{w, u_{j}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \sum_{j=1}^{n_{2}} w_{j} \sigma(u_{j} \cdot x_{i}) \Big]$$
$$= \frac{1}{m} E_{\sigma} \Big[\sup_{w} \sum_{j=1}^{n_{2}} w_{j} \sup_{||u||_{2} \le \Lambda} \sum_{i=1}^{m} \sigma_{i} \sigma(u \cdot x_{i}) \Big] = \frac{\Lambda'}{m} E_{\sigma} \Big[\sup_{||u||_{2} \le \Lambda} \sum_{i=1}^{m} \sigma_{i} \sigma(u \cdot x_{i}) \Big]$$

b) We now use the following form of Talagrand's lemma valid for all hypothesis sets \mathcal{H} and L-lipschitz functions Φ :

$$\frac{1}{m} E_{\sigma} \left[\sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{m} \sigma_i (\Phi \circ h)(x_i) \right| \right] \le \frac{L}{m} E_{\sigma} \left[\sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{m} \sigma_i h(x_i) \right| \right]$$

so that

$$\widehat{\mathfrak{R}}_{S}(\mathcal{H}) \leq \frac{\Lambda' L}{m} E_{\sigma} \Big[\sup_{||u||_{2} \leq \Lambda} \sum_{i=1}^{m} \sigma_{i}(u \cdot x_{i}) \Big] \leq \Lambda' L E_{\sigma} \Bigg[\sup_{h \in \mathcal{H}'} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}h(x_{i}) \Bigg]$$
$$= \Lambda' L \widehat{\mathfrak{R}}_{S}(\mathcal{H}')$$

c) We then find that

$$\widehat{\mathfrak{R}}_{S}(\mathcal{H}') = E_{\sigma} \Big[\sup_{s,u} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} s(u \cdot x_{i}) \Big] = E_{\sigma} \Big[\frac{1}{m} \Big| \Big| u \Big| \Big|_{2} \Big| \Big| \sum_{i=1}^{m} \sigma_{i} x_{i} \Big| \Big|_{2} \Big]$$
$$= \frac{\Lambda}{m} E_{\sigma} \Big[\Big| \Big| \sum_{i=1}^{m} \sigma_{i} x_{i} \Big| \Big|_{2} \Big]$$

d) By Jensen's inequality, we have

$$E_v[||v||_2] \le \sqrt{E_v[||v||_2^2]}$$

hence

$$\widehat{\mathfrak{R}}_{S}(\mathcal{H}') \leq \frac{\Lambda}{m} \sqrt{E_{\sigma} \left[\left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{2}^{2} \right]}$$

e) If for any $x \in S$ we have $||x||_2 \leq r$ for some r > 0, then

$$\widehat{\mathfrak{R}}_{S}(\mathcal{H}) \leq \Lambda' L\left(\frac{\Lambda}{m} \sqrt{\left(\sum_{i=1}^{m} ||\sigma_{i} x_{i}||_{2}\right)^{2}}\right) \leq \Lambda' L\left(\frac{\Lambda}{m}(mr)\right) = \Lambda' \Lambda Lr$$

3.27. Let \mathcal{C} be a concept class over \mathbb{R}^r with VC-dimension d. A \mathcal{C} -neural network with one intermediate layer is a concept defined over \mathbb{R}^n that can be represented by a direct acyclic graph in which the input nodes are those at the bottom and in which each other node is labeled with a concept $c \in \mathcal{C}$.

The output of the neural network for a given input vector $(x_1, ..., x_n)$ is obtained as follows. First, each of the *n* input nodes is labeled with the corresponding value $x_i \in \mathbb{R}$. Next, the value at a node *u* in the higher layer (labeled with *c*) is obtained by applying *c* to the values of the input nodes admitting an edge ending in *u*. Since $c \in \{0, 1\}, u \in \{0, 1\}$. The value at the top (output) node is obtained similarly by applying the corresponding concept to the values of the nodes admitting an edge to the output node.

a) Let \mathcal{H} denote the set of all neural networks defined with $k \geq 2$ internal nodes. Let $\Pi_{\mathcal{C}}(m) = \max_{z_1,...,z_m \subset \mathbb{R}^r} |\{(c(z_1),...,c(z_m)) : c \in \mathcal{C}\}|$ denote the growth function of the concept class \mathcal{C} . We then have $\Pi_{\mathcal{H}}(m) \leq (\Pi_c(m))^{k+1}$ if there are k intermediate nodes and 1 final node.

b) Since $\Pi_{\mathcal{H}}(m) \leq \Pi_{\mathcal{C}}(m)^{k+1}$, by Sauer's Lemma we have

$$\Pi_{\mathcal{C}}(m) \le \left(\frac{em}{d}\right)^d \Rightarrow \Pi_{\mathcal{H}}(m) \le \left(\frac{em}{d}\right)^{d(k+1)}$$

so that

$$m := 2(k+1)d\log_2(ek+e) \Rightarrow m > d(k+1)\log_2\left(\frac{em}{d}\right)$$

hence

$$2^m > \left(\frac{em}{d}\right)^{d(k+1)}$$

so since we must have

$$2^{m^*} \le \left(\frac{em^*}{d}\right)^{d(k+1)}$$

for the VC-dimension m^* , we have that

$$\operatorname{VCdim}(\mathcal{H}) \le 2(k+1)d\log_2(ek+e)$$

c) Let \mathcal{C} be the family of concept classes defined by threshold functions $\mathcal{C} = \left\{ \operatorname{sgn}\left(\sum_{j=1}^{r} w_j x_j\right) : w \in \mathbb{R}^r \right\}$. In this case, $\operatorname{VCdim}(\mathcal{C}) = r$ since the *r*-dimensional vectors with 1's in the *i*-th spot may be shattered but not the origin x_0 (since \mathcal{C} does not involve a term added to the dot product. Hence,

$$\operatorname{VCdim}(\mathcal{H}) \le 2(k+1)r\log_2(ek+e)$$

3.31. Let \mathcal{H} be a family of functions mapping \mathcal{X} to a subset of real numbers $\mathcal{Y} \subset \mathbb{R}$. For any $\epsilon > 0$, the "covering number" $\mathcal{N}(\mathcal{H}, \epsilon)$ of \mathcal{H} for the L_{∞} norm is the minimal $k \in \mathbb{N}$ such that \mathcal{H} can be covered with k balls of radius ϵ , i.e. there exists $\{h_1, ..., h_k\} \subset \mathcal{H}$ such that for all $h \in \mathcal{H}$ there exists $i \leq k$ with $||h - h_i||_{\infty} = \max_{x \in mcX} |h(x) - h_i(x)| \leq \epsilon$. Hence, when \mathcal{H} is compact, the finite subcover due to an ϵ covering of \mathcal{H} indicates that $\mathcal{N}(\mathcal{H}, \epsilon)$ is finite.

Let \mathcal{D} denote a distribution of $\mathcal{X} \times \mathcal{Y}$ according to which labeled examples are drawn. Then, for $h \in \mathcal{H}$, $R(h) = E_{(x,y)\sim\mathcal{D}}[(h(x) - y)^2]$ and $\widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i)^2$ for a lebeled sample $S = ((x_1, y_1), ..., (x_m, y_m))$. Suppose \mathcal{H} is bounded and that there exists M > 0 such that $|h(x) - y| \leq M$ for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$.

a) Let
$$L_{S}(h) = R(h) - \hat{R}_{S}(h)$$
. Then, we find that

$$|L_{S}(h_{1}) - L_{S}(h_{2})| = \left| E[(h_{1}(x) - y)^{2} - (h_{2}(x) - y)^{2}] + \frac{1}{m} \sum_{i=1}^{m} (h_{2}(x_{i}) - y_{i})^{2} - (h_{1}(x_{i}) - y_{i})^{2} \right|$$

$$= \left| E[h_{1}(x)^{2} - 2h_{1}(x)y - (h_{2}(x)^{2} - 2h_{2}(x)y)] + \frac{1}{m} \sum_{i=1}^{m} h_{1}(x_{i})^{2} - 2h_{1}(x_{i})y_{i} - (h_{2}(x_{i})^{2} - 2h_{2}(x_{i})y_{i}) \right|$$

$$= \left| E[(h_{1}(x) - h_{2}(x))(h_{1}(x) - y) - (h_{2}(x) - h_{1}(x))(h_{2}(x) - y)] + \frac{1}{m} \sum_{i=1}^{m} (h_{1}(x_{i}) - h_{2}(x_{i}))(h_{1}(x_{i}) - y_{i}) - (h_{2}(x_{i}) - h_{1}(x_{i}))(h_{2}(x_{i}) - y_{i}) \right|$$

$$\leq |ME[h_{1}(x) - h_{2}(x)]| + |ME[h_{2}(x) - h_{1}(x)]| + \frac{1}{m} \sum_{i=1}^{m} 2M \max_{i} |h_{1}(x_{i}) - h_{2}(x_{i})|$$

$$\leq 4M||h_{1} - h_{2}||_{\infty}$$

b) Assume that \mathcal{H} can be covered by k subsets $\mathcal{B}_1, ..., \mathcal{B}_k$, i.e. $\mathcal{H} = \mathcal{B}_1 \cup ... \cup \mathcal{B}_k$. Fix $\epsilon > 0$. We then have that

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{H}} |L_S(h)| \ge \epsilon \right] = \mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_1} |L_S(h)| \ge \epsilon \lor \dots \lor \sup_{h \in \mathcal{B}_k} |L_S(h)| \ge \epsilon \right]$$
$$\le \sum_{i=1}^k \mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_i} |L_S(h)| \ge \epsilon \right]$$

by the union bound.

c) We then let $k = \mathcal{N}(\mathcal{H}, \frac{\epsilon}{8M})$ and let $\mathcal{B}_1, ..., \mathcal{B}_k$ be balls of radius $\frac{\epsilon}{8M}$ centered at $h_1, ..., h_k$ covering \mathcal{H} . Fix $i \in [k]$. Note that if $h' := \operatorname{argmax}_{h \in \mathcal{B}_i} |L_S(h)|$, then since

$$|L_S(h') - L_S(h_i)| \le 4M ||h' - h_i||_{\infty} \le \frac{\epsilon}{2}$$

we have

$$|L_S(h')| \ge \epsilon \Rightarrow |L_S(h_i)| \ge \frac{\epsilon}{2}$$

hence

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_i} |L_S(h)| \ge \epsilon \right] \le \mathbb{P}_{S \sim \mathcal{D}^m} \left[|L_S(h_i)| \ge \frac{\epsilon}{2} \right]$$

so by Hoeffding's Inequality and part b),

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{H}} |L_S(h)| \ge \epsilon \right] \le \sum_{i=1}^k \mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_i} |L_S(h)| \ge \epsilon \right]$$
$$\le \sum_{i=1}^k \mathbb{P}_{S \sim \mathcal{D}^m} \left[|L_S(h_i)| \ge \frac{\epsilon}{2} \right] = \sum_{i=1}^k \mathbb{P}_{S \sim \mathcal{D}^m} \left[|R(h) - \widehat{R}_S(h)| \ge \frac{\epsilon}{2} \right]$$
$$\le 2ke^{-\frac{2(\frac{\epsilon}{2})^2}{\sum_{i=1}^m (\frac{M^2}{m})^2}} = 2\mathcal{N} \left(\mathcal{H}, \frac{\epsilon}{8M}\right) e^{-\frac{m\epsilon^2}{2M^2}}$$

Chapter 4 Notes

Definition: A standard algorithm to bound estimation error is Empirical Risk Minimization (ERM):

$$h_S^{\text{ERM}} = \operatorname{argmin}_{h \in \mathcal{H}} \widehat{R}_S(h)$$

Proposition 4.1: For any sample S, the following inequality holds for the hypothesis returned by ERM:

$$\mathbb{P}\Big[R(h_S^{\text{ERM}}) - \inf_{h \in \mathcal{H}} R(h) > \epsilon\Big] \le \mathbb{P}\Big[\sup_{h \in \mathcal{H}} |R(h) - \widehat{R}_S(h)| > \frac{\epsilon}{2}\Big]$$

Proof: We find that

$$\epsilon < R(h_S^{\text{ERM}}) - \inf_{h \in \mathcal{H}} R(h) \le |R(h_S^{\text{ERM}}) - \hat{R}_S(h_S^{\text{ERM}})| + |\inf_{h \in \mathcal{H}} R(h) - \hat{R}_S(h_S^{\text{ERM}})|$$

so at least one of the terms on the right hand side exceeds $\frac{\epsilon}{2}$, hence

$$\sup_{h \in \mathcal{H}} |R(h) - \widehat{R}_S(h)| > \frac{\epsilon}{2}$$

satisfying

$$\mathbb{P}\Big[R(h_S^{\text{ERM}}) - \inf_{h \in \mathcal{H}} R(h) > \epsilon\Big] \le \mathbb{P}\Big[\sup_{h \in \mathcal{H}} |R(h) - \widehat{R}_S(h)| > \frac{\epsilon}{2}\Big]$$

Definition: Regularization-based algorithms consist of selecting a family \mathcal{H} that is an uncountable union of nested hypothesis sets \mathcal{H}_{γ} , i.e. $\mathcal{H} = \bigcup_{\gamma>0} \mathcal{H}_{\gamma}$, and \mathcal{H} is often chosen to be dense in the space of continuous functions over \mathcal{X} . Often there exists $\mathcal{R} : \mathcal{H} \to \mathbb{R}$ such that, for any $\gamma > 0$, the constrained optimization problem

$$\operatorname{argmin}_{\gamma>0,h\in\mathcal{H}} \overline{R}_S(h) + \operatorname{pen}(\gamma,m)$$

where pen (γ, m) refers to a penalty term such as $\Re_m(\mathcal{H}_{\gamma}) + \sqrt{\frac{\log \gamma}{m}}$, can be written as the unconstrained optimization problem

$$\operatorname{argmin}_{h \in \mathcal{H}} R_S(h) + \lambda \mathcal{R}(h)$$

for some $\lambda > 0$. Note that $\mathcal{R}(h)$ is a "regularization term— and λ is treated as a "regularization" hyperparameter (optimal value not known). Larger λ helps penalize more complex hypotheses while $\lambda \approx 0$ coincides with ERM. Cross-validation or *n*-fold cross-validation help select a value for λ .

22

Remark: Solving the ERM optimization problem is often NP-hard since the zeroone loss function is not convex, hence using a convex "surrogate" loss function can help upper bound the zero-one loss. In particular, for real-valued $h : \mathcal{X} \to \mathbb{R}$, we denote the binary classifier

$$f_h(x) = \begin{cases} 1 & h(x) \ge 0\\ -1 & h(x) < 0 \end{cases}$$

and define the expected error R(h) as

$$R(h) = E_{(x,y)\sim\mathcal{D}}[1_{f_h(x)\neq y}]$$

For any $x \in \mathcal{X}$ we write $\eta(x) := \mathbb{P}[y = 1|x]$. For $\mathcal{D}_{\mathcal{X}}$ the marginal distribution over \mathcal{X} and any h, we then have

$$R(h) = E_{(x,y)\sim\mathcal{D}}[1_{f_h(x)\neq y}] = E_{x\sim\mathcal{D}_{\mathcal{X}}}\left[\eta(x)1_{h(x)<0} + (1-\eta(x))1_{h(x)\geq 0}\right]$$

We then define the "Bayes scoring function" $h^*:\mathcal{X}\to\mathbb{R}$ as

$$h^*(x):=\eta(x)-\frac{1}{2}$$

where

$$R^* := R(h^*)$$

denotes the error of the Bayes scoring function.

Lemma 4.5: The "excess error" of any hypothesis $h : \mathcal{X} \to \mathbb{R}$ can be expressed as

$$R(h) - R^* = 2E_{x \sim \mathcal{D}_{\mathcal{X}}} \left[|h^*(x)| \mathbf{1}_{h(x)h^*(x) \le 0} \right]$$

Proof: For any h we have

$$R(h) = E_{x \sim \mathcal{D}_{\mathcal{X}}}[\eta(x)1_{h(x)<0} + (1 - \eta(x))1_{h(x)\geq0}]$$

= $E_{x \sim \mathcal{D}_{\mathcal{X}}}[\eta(x)1_{h(x)<0} + (1 - \eta(x))(1 - 1_{h(x)<0})]$
= $E_{x \sim \mathcal{D}_{\mathcal{X}}}[2\eta(x)1_{h(x)<0} + 1 - 1_{h(x)<0} - \eta(x)]$
= $E_{x \sim \mathcal{D}_{\mathcal{X}}}[2h^{*}(x)1_{h(x)<0} + (1 - \eta(x))]$

so that

$$R(h) - R^* = 2E_{x \sim \mathcal{D}_{\mathcal{X}}}[h^*(x)\mathbf{1}_{h(x)<0} - h^*(x)\mathbf{1}_{h^*(x)<0}]$$
$$= 2E_{x \sim \mathcal{D}_{\mathcal{X}}}[\mathbf{1}_{h(x)h^*(x)\leq0}|h^*(x)|]$$

Definition: Let $\Phi : \mathbb{R} \to \mathbb{R}$ be a convex and non-decreasing function so that for any $u \in \mathbb{R}$, $1_{u \leq 0} \leq \Phi(-u)$. The " Φ -loss" of a function $h : \mathcal{X} \to \mathbb{R}$ at a point $(x, y) \in \mathcal{X} \times \{-1, 1\}$ is defined as $\Phi(-yh(x))$ and its expected loss is given by

$$\mathcal{L}_{\Phi}(h) := E_{(x,y)\sim\mathcal{D}}[\Phi(-yh(x))]$$
$$= E_{x\sim\mathcal{D}_{\mathcal{X}}}[\eta(x)\Phi(-h(x)) + (1-\eta(x))\Phi(h(x))]$$

Note that $1_{u < 0} \leq \Phi(-u) \Rightarrow R(h) \leq \mathcal{L}_{\Phi}(h)$.

Definition: We further define $u \mapsto L_{\Phi}(x, u)$ for any $x \in \mathcal{X}$ and $u \in \mathbb{R}$ as

$$L_{\Phi}(x,u) = \eta(x)\Phi(-u) + (1-\eta(x))\Phi(u)$$

so that $\mathcal{L}_{\Phi}(h) = E_{x \sim \mathcal{D}_{\mathcal{X}}}[L_{\Phi}(x, h(x))]$ Note that since Φ is convex, so is $u \mapsto L_{\Phi}(x, u)$.

Definition: Let $h_{\Phi}^* : \mathcal{X} \to [-\infty, \infty]$ denote the "Bayes solution for the loss function L_{Φ} ", i.e. $h_{\Phi}^*(x)$ solves the convex optimization problem:

$$h_{\Phi}^*(x) = \operatorname{argmin}_{u \in [-\infty,\infty]} L_{\Phi}(x,u)$$

Note that this solution may not be unique. We lastly define

$$\mathcal{L}_{\Phi}^* := E_{(x,y)\sim\mathcal{D}}[\Phi(-yh_{\Phi}^*(x))]$$

Proposition 4.6: Let Φ be a convex non-decreasing function with $\Phi'(0) > 0$. Then, for any $x \in \mathcal{X}$, $h_{\Phi}^*(x) > 0 \iff h^*(x) > 0$ and $h^*(x) = 0 \iff h_{\Phi}^*(x) = 0$, hence $\mathcal{L}_{\Phi}^* = R^*$

Theorem 4.7: Let Φ be a convex and non-decreasing function. Assume that there exists $s \ge 1$ and c > 0 such that the following holds for all $x \in \mathcal{X}$:

$$|h^*(x)|^s = |\eta(x) - \frac{1}{2}|^s \le c^s [L_{\Phi}(x,0) - L_{\Phi}(x,h_{\Phi}^*(x))]$$

Then, for any hypothesis h, the excess error of h satisfies

$$R(h) - R^* \le 2c(\mathcal{L}_{\Phi}(h) - \mathcal{L}_{\Phi}^*)^{\frac{1}{s}}$$

Proof: First note that, for $sgn(h) \neq sgn(h^*)$

(*)
$$\eta(x)\Phi(0) + (1 - \eta(x))\Phi(0) = \Phi(0) \le \eta(x)(\Phi(-h(x))) + (1 - \eta(x))\Phi(h(x))$$

as $h > 0$ for $\eta(x) < \frac{1}{2}$ and $h < 0$ for $\eta > \frac{1}{2}$, and Φ is non-decreasing with non-

decreasing derivative.

We find that

$$R(h) - R^* = 2E_{x \sim \mathcal{D}_{\mathcal{X}}}[|h^*(x)|1_{h(x)h^*(x) \leq 0}]$$

$$\leq 2E_{x \sim \mathcal{D}_{\mathcal{X}}}[c(L_{\Phi}(x,0) - L_{\Phi}(x,h_{\Phi}^*(x)))^{\frac{1}{s}}1_{h(x)h^*(x) \leq 0}]$$

$$= 2cE_{x \sim \mathcal{D}_{\mathcal{X}}}[((L_{\Phi}(x,0) - L_{\Phi}(x,h_{\Phi}^*(x)))1_{h(x)h^*(x) \leq 0})^{\frac{1}{s}}]$$

and since $x \mapsto x^{\frac{1}{s}}$ is a concave function for $s \ge 1$,

 $\leq 2c(E_{x \sim \mathcal{D}_{\mathcal{X}}}[(L_{\Phi}(x,0) - L_{\Phi}(x,h_{\Phi}^{*}(x)))1_{h(x)h^{*}(x) \leq 0}])^{\frac{1}{s}}$

By (*) we then have

$$\leq 2c(E_{x \sim \mathcal{D}_{\mathcal{X}}}[(L_{\Phi}(x, h(x)) - L_{\Phi}(x, h_{\Phi}^{*}(x)))1_{h(x)h^{*}(x) < 0}])^{\frac{1}{s}}$$

so since since $L_{\Phi}(x, h(x)) \ge L_{\Phi}(x, h_{\Phi}^*(x))$ for any h,

$$\leq 2c(E_{x\sim\mathcal{D}_{\mathcal{X}}}[L_{\Phi}(x,h(x))-L_{\Phi}(x,h_{\Phi}^{*}(x))])^{\frac{1}{s}}=2c(\mathcal{L}_{\Phi}(h)-\mathcal{L}_{\Phi}^{*})^{\frac{1}{s}}$$

Ch. 4 Exercises.

24

4.1. We find that, for any $h \in \mathcal{H}$, $\widehat{R}_S(h_S^{\text{ERM}}) \leq \widehat{R}_S(h)$, hence $E_{S \sim \mathcal{D}^m}[\widehat{R}_S(h_S^{\text{ERM}})] \leq \mathbb{R}_S(h_S^{\text{ERM}})$ $\inf_{h \in \mathcal{H}} E_{S \sim \mathcal{D}^m}[\widehat{R}_S(h)]. \text{ Further, } R(h_S^{\text{ERM}}) \geq \inf_{h \in \mathcal{H}} R(h) \text{ for any } S \sim \mathcal{D}^m, \text{ hence } \inf_{h \in \mathcal{H}} E_{S \sim \mathcal{D}^m}[\widehat{R}_S(h)] \leq E_{S \sim \mathcal{D}^m}[R(h_S^{\text{ERM}})]$

4.2. Let $\Phi(u) = (1+u)^2$, so that Φ is non-decreasing on $[-1,\infty]$ and convex with $\Phi''(u) = 2 > 0$. We observe that

$$\eta(x)\Phi(-u) + (1 - \eta(x))\Phi(u) = (1 + u)^2 - 4\eta(x)u$$

so for $\eta = 0$,

$$|h^*(x)|^2 = \frac{1}{4} = (\frac{1}{2})^2 (1 - \inf_u((1+u)^2))$$

For $\eta = \frac{1}{2}$ we have

$$|h^*(x)|^2 = 0 = \frac{1 - \inf_u(1 + u^2)}{4} = (\frac{1}{2})^2 (1 - \inf_u((1 + u)^2 - 2u))$$

For $\eta = \frac{1}{2} + \epsilon$ with $\epsilon \in (0, \frac{1}{2}]$, since $\inf_u \frac{u^2 - 4u\epsilon}{4} \leq -\epsilon^2$,

$$|h^*(x)|^2 = \epsilon^2 = -\frac{4\epsilon^2 - 8\epsilon^2}{4} \le -\inf_u \frac{u^2 - 4u\epsilon}{4} = \frac{1 - \inf_u ((1+u)^2 - 4u(\frac{1}{2} + \epsilon))}{4}$$

Similarly, for $\eta = \frac{1}{2} - \epsilon$ with $\epsilon \in (0, \frac{1}{2}]$, since $\inf_u \frac{u^2 - 4u\epsilon}{4} \le -\epsilon^2$ (choosing $u = -2\epsilon$), $|h^*(x)|^2 - \epsilon^2 = -\frac{4\epsilon^2 - 8\epsilon^2}{4\epsilon^2} < -\inf_{i=1}^{\infty} \frac{u^2 + 4u\epsilon}{4\epsilon^2}$

$$|h^*(x)|^2 = \epsilon^2 = -\frac{4\epsilon^2 - 8\epsilon^2}{4} \le -\inf_u \frac{u^2 + 4u\epsilon}{4}$$

$$=\frac{1-\inf_{u}((1+u)^{2}-4u(\frac{1}{2}-\epsilon))}{4}=\frac{1}{4}(\Phi(0)-L_{\Phi}(x,h_{\Phi}^{*}(x)))=\frac{1}{4}(L_{\Phi}(x,0)-L_{\Phi}(x,h_{\Phi}^{*}(x)))$$

Hence, for s = 2 and $c = \frac{1}{2}$ we have

$$R(h) - R^* \le \left[\mathcal{L}_{\Phi}(h) - \mathcal{L}_{\Phi}^*\right]^{\frac{1}{2}}$$

4.3. We then consider the Hinge loss $\Phi(u) = \max(0, 1+u)^2$. Since this function is the same as that in 4.2 on $[-1, \infty]$, the same bounds hold.

4.4. Define the loss of $h: \mathcal{X} \to \mathbb{R}$ at a point $(x, y) \in \mathcal{X} \times \{-1, 1\}$ to be $1_{yh(x) < 0}$.

a) The Bayes classifier in this case is

$$h'(x) := \operatorname{argmin}_{y \in \{-1,1\}} \mathbb{P}[y|x]$$

hence a scoring function could be

$$h^*(x) := \begin{cases} \eta(x) - \frac{1}{2} & \eta(x) \neq \frac{1}{2} \\ -1 & \eta(x) = \frac{1}{2} \end{cases}$$

where $\eta(x) = \mathbb{P}[1|x]$.

b) In this case, replacing $1_{h(x)\leq 0}$ with $1_{h(x)<0} + 1_{h(x)=0}$ yields

$$R(h) = E_{x \sim \mathcal{D}_{\mathcal{X}}}[\eta(x)(1 - 1_{h(x)>0}) + (1 - \eta(x))(1_{h(x)>0} + 1_{h(x)=0})]]$$

$$\begin{aligned} R(h) - R^* &= E_{(x,y)\in\mathcal{D}}[1_{yh(x)\leq 0} - 1_{yh^*(x)\leq 0}] \\ &= E_{x\sim\mathcal{D}_{\mathcal{X}}}[\eta(x)1_{h(x)\leq 0} + (1-\eta(x))1_{h(x)\geq 0} - (\eta(x)1_{h^*(x)\leq 0} + (1-\eta(x))1_{h^*(x)\geq 0})] \\ \text{where replacing } 1_{h(x)\leq 0} \text{ with } 1_{h(x)< 0} + 1_{h(x)= 0} \text{ yields} \end{aligned}$$

LUCAS TUCKER

$$= E_{x \sim \mathcal{D}_{\mathcal{X}}} [2|h^*(x)|1_{h(x)*h^*(x) \le 0} + (-h^*(x) + \frac{1}{2})(1_{h(x)=0} - 1_{h^*(x)=0})]$$

Chapter 15 Notes

Definition: A projection on a vector space V is a linear operator $P: V \to V$ such that $P^2 = P$. A projection on a Hilbert space V is an orthogonal projection if $\langle Px, y \rangle = \langle x, Py \rangle$

Definition: The "Frobenius norm", denoted by $||.||_F$ is a matrix norm defined over $\mathbb{R}^{m \times n}$ as

$$||\mathbf{M}||_F := \sqrt{\sum_{i=1}^m \sum_{j=1}^n \mathbf{M}_{ij}^2}$$

Definition: For a sample $S = (x_1, ..., x_m)$ and feature mapping $\Phi : \mathcal{X} \to \mathbb{R}^N$, we define the data matrix $(\Phi(x_1), ..., \Phi(x_m)) =: \mathbf{X} \in \mathbb{R}^{N \times m}$. If \mathbf{X} is a meancentered data matrix $(\sum_{i=1}^m \Phi(x_i) = \mathbf{0})$, let \mathcal{P}_k denote the set of N-dimensional rank-k orthogonal projection matrices. PCA (Principal Component Analysis) is defined by the orthogonal projection matrix

$$\mathbf{P}^* := \operatorname{argmin}_{\mathbf{P} \in \mathcal{P}_k} ||\mathbf{P}\mathbf{X} - \mathbf{X}||_F^2$$

Definition: The "top singular vector" of a matrix \mathbf{M} is the vector \mathbf{x} which maximizes the Rayleigh quotient

$$r(\mathbf{x}, \mathbf{M}) = \frac{\mathbf{x}^T \mathbf{M} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

Theorem 15.1: Let $\mathbf{P}^* \in \mathcal{P}_k$ be the PCA solution for a centered data matrix **X**. Then, $\mathbf{P}^* = \mathbf{U}_k \mathbf{U}_k^T$, where $\mathbf{U}_k \in \mathbb{R}^{N \times k}$ is the matrix formed by the top k singular vectors of $\mathbf{C} := \frac{1}{m} \mathbf{X} \mathbf{X}^T$, the sample covariance matrix corresponding to **X**. Note that this is the sample covariance matrix since

$$\frac{1}{m} (\mathbf{X}\mathbf{X}^T)_{ij} = \frac{1}{m} \sum_{\ell=1}^m \mathbf{X}_{i\ell} \mathbf{X}_{\ell j}^T = \frac{1}{m} \sum_{\ell=1}^m \mathbf{\Phi}(x_\ell)_i \mathbf{\Phi}(x_\ell)_j$$
$$= E[\mathbf{\Phi}(x)_i \mathbf{\Phi}(x)_j] = E[\mathbf{\Phi}(x)_i \mathbf{\Phi}(x)_j] - E[\mathbf{\Phi}(x)_i] E[\mathbf{\Phi}(x)_j] = \operatorname{Cov}(\mathbf{\Phi}(x)_i, \mathbf{\Phi}(x)_j)$$

where the right hand term is the covariance between i-th and j-th coordinates of the feature output based on m samples. Moreover, the associated k-dimensional representation of \mathbf{X} is given by $\mathbf{Y} = \mathbf{U}_k^T \mathbf{X}$.

Proof: For $\mathbf{P} = \mathbf{P}^T$ an orthogonal projection matrix, we seek to minimize

$$||\mathbf{P}\mathbf{X} - \mathbf{X}||_{F}^{2} = \sum_{i=1}^{N} \sum_{j=1}^{N} ((\mathbf{P}\mathbf{X} - \mathbf{X})_{ij})^{2} = \operatorname{Tr}[(\mathbf{P}\mathbf{X} - \mathbf{X})^{T}(\mathbf{P}\mathbf{X} - \mathbf{X})]$$
$$= \operatorname{Tr}[\mathbf{X}^{T}\mathbf{P}^{2}\mathbf{X} - \mathbf{X}^{T}\mathbf{P}^{T}\mathbf{X} - \mathbf{X}^{T}\mathbf{P}\mathbf{X} + \mathbf{X}^{T}\mathbf{X}] = \operatorname{Tr}[\mathbf{X}^{T}\mathbf{P}\mathbf{X} - 2\mathbf{X}^{T}\mathbf{P}\mathbf{X} + \mathbf{X}^{T}\mathbf{X}]$$
$$= \operatorname{Tr}[\mathbf{X}^{2}] - \operatorname{Tr}[\mathbf{X}^{T}\mathbf{P}\mathbf{X}]$$

26

hence we seek to maximize

$$\operatorname{Tr}[\mathbf{X}^{T}\mathbf{P}\mathbf{X}] = \operatorname{Tr}[\mathbf{X}^{T}\mathbf{U}_{k}\mathbf{U}_{k}^{T}\mathbf{X}] = \operatorname{Tr}[\mathbf{U}_{k}^{T}\mathbf{X}\mathbf{X}^{T}\mathbf{U}_{k}]$$
$$= \sum_{i=1}^{k} \left(\sum_{j=1}^{N} (\mathbf{U}_{k}^{T}\mathbf{X}\mathbf{X}^{T})_{ij}(\mathbf{U}_{k})_{ji}\right) = \sum_{i=1}^{k} \left(\sum_{j=1}^{N} \left(\sum_{\ell=1}^{N} (\mathbf{U}_{k}^{T})_{i\ell}(\mathbf{X}\mathbf{X}^{T})_{\ell j}\right)(\mathbf{U}_{k})_{ji}\right)$$
so for $\mathbf{u}_{i} := ((\mathbf{U}_{k})_{1i}, ..., (\mathbf{U}_{k})_{Ni}),$
$$= \sum_{i=1}^{N} \left(\mathbf{u}_{i}^{T}\mathbf{X}\mathbf{X}^{T}\mathbf{u}_{i}\right)$$

where

$$\mathbf{P}\mathbf{X} = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$$

so that $\mathbf{Y} := \mathbf{U}_k^T \mathbf{X}$ is a k-dimensional representation of \mathbf{X} .

Note: The top singular vectors of \mathbf{C} are the directions of maximal variance in the data, and the \mathbf{u}_i are the variances, so that PCA may be understood as projection onto the subspace of maximal variance.

b) In the 1-dimensional case, PCA seeks to minimize $||\mathbf{PX} - \mathbf{X}||_F^2$, which by part a) gives the direction in which projection yields maximal variance.

Remark: In Kernel principle component analysis (KPCA), the feature map Φ send \mathcal{X} to an arbitrary Reproducing Kernel Hilbert Space (RKHS) equipped with its own inner product (kernel function K).

Definition: Isomap extracts the low-dimensional data that best preserves pairwise distances between inputs based on their geodesic distances along a manifold. The algorithm is specified as follows:

1. Using the L_2 norm, find the t closest neighbors for each data point and construct an undirected neighborhod graph \mathcal{G} , in which points are nodes and links are edges.

2. Compute approximate geodesic distances Δ_{ij} between all pairs of nodes (i, j) by computing all-pairs shortest distances in \mathcal{G} .

3. Calculate the $m \times m$ similarity matrix as $\mathbf{K}_{\text{Iso}} := -\frac{1}{2} (\mathbf{I}_m - \frac{1}{m} \mathbf{1} \mathbf{1}^T) \mathbf{\Delta} (\mathbf{I}_m - \frac{1}{m} \mathbf{1} \mathbf{1}^T)$, where $\mathbf{1}$ is a column vector of all ones and $\mathbf{\Delta}$ is the squared distance matrix.

4. Find the optimal k-dimensional representation $\mathbf{Y} = {\{\mathbf{y}_i\}}_{i=1}^n$ where

$$\mathbf{Y} = \operatorname{argmin}_{\mathbf{Y}'} \sum_{i,j} \left(||\mathbf{y}'_i - \mathbf{y}'_j||_2^2 - \boldsymbol{\Delta}_{ij}^2 \right)$$

given by

$$\mathbf{Y} = (\mathbf{\Sigma}_{\mathrm{Iso, j}})^{\frac{1}{2}} \mathbf{U}_{\mathrm{Iso, k}}^T$$

Note that $\Sigma_{\text{Iso, j}}$ is the diagonal matrix of the top k singular values of \mathbf{K}_{Iso} and $\mathbf{u}_{\text{Iso, k}}$ are the corresponding singular vectors. Further, \mathbf{K}_{Iso} serves as a kernel matrix (similarity matrix for data points in feature space) if it is positive semidefinite.

Definition The Laplacian Eigenmaps algorithm aims to find a k-dimensional representation of the data matrix **X** which best preserves the weighted neighborhood relations specified by a matrix **W**:

1. Find the t nearest neighbors of each point

2. Define $\mathbf{W} \in \mathbb{R}^{m \times m}$ as $\mathbf{W}_{ij} := e^{\frac{||\mathbf{x}_i - \mathbf{x}_j||_2^2}{\sigma^2}}$ if \mathbf{x}_i and \mathbf{x}_j are neighbors, or as 0 otherwise, where σ is a scaling parameter.

- 3. Construct a diagonal matrix $\mathbf{D} \in \mathbb{R}^{m \times m}$ as $\mathbf{D}_{ii} = \sum_{j=1}^{m} \mathbf{W}_{ij}$.
- 4. Find $\mathbf{Y} \in \mathbb{R}^{k \times m}$ satisfying

$$\operatorname{argmin}_{\mathbf{Y}'} \Big\{ \sum_{i,j} \mathbf{W}_{ij} || \mathbf{y}'_i - \mathbf{y}'_j ||_2^2 \Big\}$$

Intuitively, the above minimization penalizes k-dimensional representations of neighbors that differ largely under the L_2 norm.

Proposition (LE definition): The solution to the Laplacian eigenmap minimization is $\mathbf{U}_{\mathbf{L},k}^T$, where $\mathbf{L} = \mathbf{D} - \mathbf{W}$ is the "graph Laplacian" and $\mathbf{U}_{\mathbf{L},k}^T$ are the bottom k singular vectors of \mathbf{L} (excluding 0 if the underlying neighborhood graph has connections).

Proof: We find that, for $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{Y} \in \mathbb{R}^{k \times m}$ we have

$$(\mathbf{Y}\mathbf{L}\mathbf{Y}^{T})_{ij} = \sum_{\ell=1}^{m} \mathbf{Y}_{i\ell}^{T}(\mathbf{L}\mathbf{Y})_{\ell j} = \sum_{\ell=1}^{m} \mathbf{Y}_{\ell i} \left(\sum_{t=1}^{m} \mathbf{L}_{\ell t} \mathbf{Y}_{t j}\right)$$
$$(*) \quad = \sum_{\ell=1}^{m} \mathbf{Y}_{\ell i} \sum_{t \neq \ell} \mathbf{W}_{\ell t} (\mathbf{Y}_{\ell j} - \mathbf{Y}_{t j})$$

while

$$\sum_{i,\ell} \mathbf{W}_{i\ell} ||\mathbf{y}'_i - \mathbf{y}'_\ell||_2^2 = \sum_{i=1}^m \sum_{\ell=1}^m \mathbf{W}_{i\ell} (\mathbf{y}'_i - \mathbf{y}'_\ell)^T (\mathbf{y}'_i - \mathbf{y}'_\ell)$$
$$= \sum_{i=1}^m \sum_{\ell=1}^m \mathbf{W}_{i\ell} ((\mathbf{y}'_i)^2 - 2(\mathbf{y}'_\ell^T \mathbf{y}'_i) + (\mathbf{y}'_\ell)^2)$$
$$= \sum_{i=1}^m \sum_{\ell=1}^m \mathbf{W}_{i\ell} \Big(\sum_{j=1}^m (\mathbf{y}'_i)_j^2 - 2(\mathbf{y}'_\ell)_j (\mathbf{y}'_i)_j + (\mathbf{y}'_\ell)_j^2 \Big)$$
$$= \sum_{i=1}^m \sum_{\ell=1}^m \mathbf{W}_{i\ell} \Big(\sum_{j=1}^m \mathbf{Y}'_{ji}^2 - 2\mathbf{Y}'_{j\ell}\mathbf{Y}'_{ji} + \mathbf{Y}'_{j\ell}^2 \Big)$$

hence by (*)

$$=\sum_{i=1}^{k} (\mathbf{Y}' \mathbf{L} \mathbf{Y}'^{T})_{ii}$$

so for $\mathbf{Y} := \mathbf{Y}^{T}$, by the final simplication used in Theorem 15.1,

$$=\sum_{i=1}^k \mathbf{y}_i^T \mathbf{L} \mathbf{y}_i$$

Remark (PCA Gradient Descent): From Theorem 15.1, we have that

$$\begin{aligned} \frac{\partial}{\partial (U_k)_{ab}} ||PX - X||_F^2 &= -\frac{\partial}{\partial (U_k)_{ab}} \sum_{i=1}^k \sum_{j=1}^N \sum_{\ell=1}^N (U_k^T)_{i\ell} (XX^T)_{\ell j} (U_k)_{ji} \\ &= -\left(2(U_k)_{ab} (XX^T)_{aa} + \sum_{\ell \neq a}^N (U_k^T)_{b\ell} (XX^T)_{\ell a} + \sum_{j \neq a}^N (XX^T)_{aj} (U_k)_{jb}\right) \\ &= -2\sum_{\ell=1}^N (U_k)_{\ell b} (XX^T)_{a\ell} \end{aligned}$$

since

$$XX_{ij}^{T} = \sum_{s=1}^{m} X_{is}X_{sj}^{T} = \sum_{s=1}^{m} X_{js}X_{si}^{T} = XX_{ji}^{T}$$

so for $F(U_k) = ||U_k U_k^T X - X||_F^2$ and $DF(U_k)_{ji} = \frac{\partial}{\partial (U_k)_{ji}} ||PX - X||_F^2$, we perform gradient descent steps as

$$U_k - \lambda DF(U_k)$$

for step size λ .

Ch. 15 Exercises.

15.1. Let **X** be an uncentered data matrix and let $\overline{\mathbf{x}} := \frac{1}{m} \sum_{i=1}^{N} \mathbf{x}_i$ be the sample mean of the columns of **X**.

a) We require

$$\mathbf{C}_{ij} = \operatorname{Cov}(\mathbf{\Phi}(x)_i, \mathbf{\Phi}(x)_j) = E[\mathbf{\Phi}(x)_i \mathbf{\Phi}(x)_j] - E[\mathbf{\Phi}(x)_i] E[\mathbf{\Phi}(x)_j]$$
$$= \frac{1}{m} \sum_{\ell=1}^m \mathbf{\Phi}(x_\ell)_i \mathbf{\Phi}(x_\ell)_j - \overline{\mathbf{x}}_i \overline{\mathbf{x}}_j = \frac{1}{m} \sum_{\ell=1}^m (\mathbf{x}_\ell)_i (\mathbf{x}_\ell)_j - \overline{\mathbf{x}}_i \overline{\mathbf{x}}_j$$
$$= \frac{1}{m} \Big(\sum_{\ell=1}^m (\mathbf{x}_\ell)_i (\mathbf{x}_\ell)_j - (\mathbf{x}_\ell)_i (\overline{\mathbf{x}}_j) - (\mathbf{x}_\ell)_j (\overline{\mathbf{x}}_i) + (\overline{\mathbf{x}}_i) (\overline{\mathbf{x}}_j) \Big)$$

hence

$$\mathbf{C} = \frac{1}{m} \sum_{\ell=1}^{m} (\mathbf{x}_{\ell} \mathbf{x}_{\ell}^{T} - \mathbf{x}_{\ell} \overline{\mathbf{x}}^{T} - \overline{\mathbf{x}}^{T} \mathbf{x}_{\ell} + \overline{\mathbf{x}}^{T} \overline{\mathbf{x}}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i} - \overline{\mathbf{x}}) (\mathbf{x}_{i} - \overline{\mathbf{x}})^{T}$$

Then, for a vector $\mathbf{u} \in \mathbb{R}^N$, we have

vector
$$\mathbf{u} \in \mathbb{R}^N$$
, we have
 $\operatorname{Var}(\mathbf{u}^T \mathbf{x}_i) = E[(\mathbf{u}^T \mathbf{x}_i)^2] - E[\mathbf{u}^T \mathbf{x}_i]^2$
 $= \frac{1}{m} \left(\sum_{i=1}^m (\mathbf{u}^T \mathbf{x}_i)^2 \right) - (\mathbf{u}^T \overline{\mathbf{x}})^2 = \frac{1}{m} \left(\sum_{i=1}^m (\mathbf{u}^T \mathbf{x}_i)^2 - (\mathbf{u}^T \overline{\mathbf{x}})^2 \right)$
 $= \frac{1}{m} \sum_{i=1}^m \mathbf{u}^T (\mathbf{x}_i \mathbf{x}_i^T - \mathbf{x}_i \overline{\mathbf{x}}^T - \overline{\mathbf{x}}^T \mathbf{x}_i + \overline{\mathbf{x}}^T \overline{\mathbf{x}}) \mathbf{u} = \mathbf{u} \mathbf{C} \mathbf{u}^T$

15.2. In this problem we prove the correctness of double centering (computing \mathbf{K}_{Iso}) using Euclidean distance. Define \mathbf{X} as in 15.1, and define \mathbf{X}^* to have $\mathbf{x}_i^* := \mathbf{x}_i - \overline{\mathbf{x}}$ as its *i*-th column. Let $\mathbf{K} := \mathbf{X}\mathbf{X}^T$ and let \mathbf{D} denote the Euclidean distance matrix with $\mathbf{D}_{ij} = ||\mathbf{x}_i - \mathbf{x}_j||$. Further, let $\boldsymbol{\Delta}$ denote the squared distance matrix with $\boldsymbol{\Delta}_{ij} = \mathbf{D}_{ij}^2$.

a) We find that

$$\begin{split} \mathbf{K}_{ij} &= \sum_{\ell=1}^{m} \mathbf{X}_{i\ell}^{T} \mathbf{X}_{\ell j} = \frac{1}{2} \Big(\sum_{\ell=1}^{m} \mathbf{X}_{\ell i}^{2} - \mathbf{X}_{\ell i}^{2} + \mathbf{X}_{\ell j}^{2} - \mathbf{X}_{\ell j}^{2} + 2\mathbf{X}_{\ell i} \mathbf{X}_{\ell j} \Big) \\ &= \frac{1}{2} \Big(\sum_{\ell=1}^{m} \mathbf{X}_{\ell i}^{2} + \mathbf{X}_{\ell j}^{2} - (\mathbf{X}_{\ell j} - \mathbf{X}_{\ell i})^{2} \Big) = \frac{1}{2} (\mathbf{K}_{ii} + \mathbf{K}_{jj} - ||\mathbf{x}_{i} - \mathbf{x}_{j}||^{2}) \\ &= \frac{1}{2} (\mathbf{K}_{ii} + \mathbf{K}_{jj} - \mathbf{D}_{ij}^{2}) \end{split}$$

b) Let $\mathbf{K}^* := \mathbf{X}^{*T} \mathbf{X}^*$. We first find that

$$\frac{1}{m} (\mathbf{K} \mathbf{1} \mathbf{1}^T)_{ij} = \frac{1}{m} \sum_{t=1}^m \mathbf{K}_{it} = \frac{1}{m} \sum_{t=1}^m \sum_{\ell=1}^m \mathbf{X}_{\ell i} \mathbf{X}_{\ell t} = \sum_{\ell=1}^m (\overline{\mathbf{x}})_\ell (\mathbf{x}_i)_\ell$$
$$\frac{1}{m} (\mathbf{1} \mathbf{1}^T \mathbf{K})_{ij} = \frac{1}{m} \sum_{t=1}^m \mathbf{K}_{tj} = \frac{1}{m} \sum_{t=1}^m \sum_{\ell=1}^m \mathbf{X}_{\ell t} \mathbf{X}_{\ell j} = \sum_{\ell=1}^m (\overline{\mathbf{x}})_\ell (\mathbf{x}_j)_\ell$$

and

$$\frac{1}{m^2} (\mathbf{1}\mathbf{1}^T \mathbf{K} \mathbf{1}\mathbf{1}^T)_{ij} = \frac{1}{m^2} \sum_{t=1}^m (\mathbf{1}\mathbf{1}^T)_{it} (\mathbf{K} \mathbf{1}\mathbf{1}^T)_{tj} = \frac{1}{m} \sum_{t=1}^m \sum_{\ell=1}^m (\overline{\mathbf{x}})_\ell (\mathbf{x}_t)_\ell = \sum_{\ell=1}^m (\overline{\mathbf{x}}_\ell)^2$$

Then,

$$\mathbf{K}_{ij}^{*} = \sum_{\ell=1}^{N} \mathbf{X}_{i\ell}^{*T} \mathbf{X}_{\ell j}^{*} = \sum_{\ell=1}^{N} (\mathbf{x}_{i} - \overline{\mathbf{x}})_{\ell} (\mathbf{x}_{j} - \overline{\mathbf{x}})_{\ell}$$
$$= \sum_{\ell=1}^{N} (\mathbf{x}_{i})_{\ell} (\mathbf{x}_{j})_{\ell} - (\mathbf{x}_{i})_{\ell} (\overline{\mathbf{x}})_{\ell} - (\mathbf{x}_{j})_{\ell} (\overline{\mathbf{x}})_{\ell} + (\overline{\mathbf{x}})_{\ell}^{2}$$
$$= \mathbf{K}_{ij} - \frac{1}{m} (\mathbf{K}\mathbf{1}\mathbf{1}^{T})_{ij} - \frac{1}{m} (\mathbf{1}\mathbf{1}^{T}\mathbf{K})_{ij} + \frac{1}{m^{2}} (\mathbf{1}\mathbf{1}^{T}\mathbf{K}\mathbf{1}\mathbf{1}^{T})_{ij}$$
$$\mathbf{K}^{*} = \mathbf{K} - \frac{1}{m} \mathbf{K}\mathbf{1}\mathbf{1}^{T} - \frac{1}{m} \mathbf{1}\mathbf{1}\mathbf{T}\mathbf{K} + \frac{1}{m^{2}} \mathbf{1}\mathbf{1}^{T}\mathbf{K}\mathbf{1}\mathbf{1}^{T}$$

so that

$$\mathbf{K}^* = \mathbf{K} - \frac{1}{m} \mathbf{K} \mathbf{1} \mathbf{1}^T - \frac{1}{m} \mathbf{1} \mathbf{1}^T \mathbf{K} + \frac{1}{m^2} \mathbf{1} \mathbf{1}^T \mathbf{K} \mathbf{1} \mathbf{1}^T$$

c) We find that

$$\begin{aligned} \mathbf{K}_{ij}^{*} &= \mathbf{K}_{ij} - \frac{1}{m} (\mathbf{K} \mathbf{1} \mathbf{1}^{T})_{ij} - \frac{1}{m} (\mathbf{1} \mathbf{1}^{T} \mathbf{K})_{ij} + \frac{1}{m^{2}} (\mathbf{1} \mathbf{1}^{T} \mathbf{K} \mathbf{1} \mathbf{1}^{T})_{ij} \\ &= \frac{1}{2} (\mathbf{K}_{ii} + \mathbf{K}_{jj} - \mathbf{D}_{ij}^{2}) - \frac{1}{m} (\mathbf{K} \mathbf{1} \mathbf{1}^{T})_{ij} - \frac{1}{m} (\mathbf{1} \mathbf{1}^{T} \mathbf{K})_{ij} + \frac{1}{m^{2}} (\mathbf{1} \mathbf{1}^{T} \mathbf{K} \mathbf{1} \mathbf{1}^{T})_{ij} \\ &= \frac{1}{2} (\mathbf{K}_{ii} + \mathbf{K}_{jj} - \mathbf{D}_{ij}^{2}) - \frac{1}{m} \sum_{t=1}^{m} \mathbf{K}_{it} - \frac{1}{m} \sum_{t=1}^{m} \mathbf{K}_{tj} + \frac{1}{m^{2}} \sum_{t=1}^{m} \sum_{\ell=1}^{m} \mathbf{K}_{\ell\ell} \end{aligned}$$

NOTES AND SOLUTIONS TO MOHRI'S FOUNDATIONS OF MACHINE LEARNING 31

$$= \frac{1}{2} (\mathbf{K}_{ii} + \mathbf{K}_{jj} - \mathbf{D}_{ij}^{2}) - \frac{1}{2m} \sum_{t=1}^{m} \left((\mathbf{K}_{ii} + \mathbf{K}_{tt} - \mathbf{D}_{it}^{2}) + (\mathbf{K}_{tt} + \mathbf{K}_{jj} - \mathbf{D}_{tj}^{2}) - \frac{1}{m} \sum_{\ell=1}^{m} (\mathbf{K}_{tt} + \mathbf{K}_{\ell\ell} - \mathbf{D}_{t\ell}^{2}) \right)$$
$$= \frac{1}{2} (-\mathbf{D}_{ij}^{2}) - \frac{1}{2m} \sum_{t=1}^{m} \left((\mathbf{K}_{tt} - \mathbf{D}_{it}^{2}) - \mathbf{D}_{tj}^{2} - \frac{1}{m} \sum_{\ell=1}^{m} (\mathbf{K}_{\ell\ell} - \mathbf{D}_{t\ell}^{2}) \right)$$
$$= \frac{1}{2} \left(-\mathbf{D}_{ij}^{2} - \frac{1}{m} \sum_{t=1}^{m} (\mathbf{K}_{tt} - \mathbf{D}_{it}^{2} - \mathbf{D}_{tj}^{2}) + \frac{1}{m^{2}} \sum_{t=1}^{m} \sum_{\ell=1}^{m} (\mathbf{K}_{\ell\ell} - \mathbf{D}_{t\ell}^{2}) \right)$$
$$= -\frac{1}{2} \left(\mathbf{D}_{ij}^{2} - \frac{1}{m} \sum_{t=1}^{m} (\mathbf{D}_{it}^{2} + \mathbf{D}_{tj}^{2}) + \frac{1}{m^{2}} \sum_{t=1}^{m} \sum_{\ell=1}^{m} \mathbf{D}_{t\ell}^{2} \right)$$

d) We then find that

$$(\boldsymbol{\Delta}(\mathbf{I}_m - \frac{1}{m}\mathbf{1}\mathbf{1}^T))_{\ell j} = \boldsymbol{\Delta}_{\ell j} - \frac{1}{m}\sum_{t=1}^m \boldsymbol{\Delta}_{\ell t}$$

hence we may solve for $(\mathbf{H}\Delta\mathbf{H})_{ij}$ as

$$((\mathbf{I}_m - \frac{1}{m}\mathbf{1}\mathbf{1}^T)\mathbf{\Delta}(\mathbf{I}_m - \frac{1}{m}\mathbf{1}\mathbf{1}^T))_{ij} = \mathbf{\Delta}_{ij} - \frac{1}{m}\sum_{t=1}^m \mathbf{\Delta}_{it} - \frac{1}{m}\sum_{\ell=1}^m (\mathbf{\Delta}_{\ell j} - \frac{1}{m}\sum_{t=1}^m \mathbf{\Delta}_{\ell t})$$
$$= -2\mathbf{K}_{ij}^* \Rightarrow \mathbf{K}^* = -\frac{1}{2}\mathbf{H}\mathbf{\Delta}\mathbf{H}$$

15.3. Assume k = 1 and we seek a one-dimensional representation \mathbf{y} . By Proposition (LE Definition), the Laplacian eigenmap optimization problem is equivalent to $\mathbf{y} = \operatorname{argmin}_{\mathbf{y}'} \mathbf{y}'^T \mathbf{L} \mathbf{y}'$

Remark: We now seek to understand such algorithms in the context of the Fenchel game no-regret dynamics framework (FGNRD) introduced by Wang-Abernethy-Levy.

Definition (Conjugate function): For a function $f: D \to \mathbb{R} \cup \infty$ where $D \subset \mathbb{R}^d$, we define its conjugate $f^*: \mathbb{R}^d \to \mathbb{R} \cup \infty$ as

$$f^*(y) := \sup_{x \in D} \{ \langle y, x \rangle - f(x) \}$$

Proposition (Conjugate convex): Conjugate functions of convex functions are convex.

Proof: For $f: D \to \mathbb{R}$ convex where $D \subset \mathbb{R}^d$, we find that $f^*(\lambda x + (1 - \lambda)y) = \sup_{x' \in D} \{\langle x', \lambda x + (1 - \lambda)y \rangle - f(x')\}$ $= \sup_{x' \in D} \{\langle x', \lambda x + (1 - \lambda)y \rangle - f(x')\}$ $= \sup_{x' \in D} \{\langle x', \lambda x \rangle + \langle x', y \rangle - \lambda \langle x', y \rangle - f(x')\}$ $= \sup_{x' \in D} \{\lambda \langle x, x' \rangle - \lambda f(x') + \langle y, x' \rangle - f(x') - \lambda \langle y, x' \rangle + \lambda f(x')\}$ LUCAS TUCKER

$$= \sup_{x' \in D} \{\lambda(\langle x, x' \rangle - f(x')) + (1 - \lambda)(\langle y, x' \rangle - f(x'))\}$$

$$\leq \lambda \sup_{x' \in D} \{\langle x, x' \rangle - f(x')\} + (1 - \lambda) \sup_{x'' \in D} \{\langle y, x'' \rangle - f(x'')\}$$

$$= \lambda f^*(x) + (1 - \lambda) f^*(y)$$

Definition (subdifferential): The subdifferential $\partial f(x)$ is the set of all subgradients of f at x, i.e.

$$\partial f(x) = \{ f_x : f(z) \ge \langle f_x, z - x \rangle + f(x), \ \forall z \}$$

Proposition (Equivalence) : For a closed convex function $f : \mathbb{R}^d \to \mathbb{R}$, the following are equivalent:

1.
$$y \in \partial f(x)$$

II. $x \in \partial f^*(y)$
III. $\langle x, y \rangle = f(x) + f^*(y)$

Proof: We first note that $f^*(x)$ is convex as the supremum over First suppose $y \in \partial f(x)$, i.e. $f(z) - f(x) \ge \langle y, z - x \rangle$ for all $z \in \mathbb{R}^d$. NOT YET DONE!!

Definition (Payoff function) We define our two-input "payoff" function g: $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ as

$$g(x,y) := \langle x,y \rangle - f^*(y)$$

We will understand this function as a zero-sum game in which, if player 1 selects action x and player 2 selects action y, g(x, y) is the "cost" for player 1 and the "gain" for player 2.

Definition (Min-max problems, Nash equilibrium): Given a zero-sum game with a payoff function g(x, y) which is convex in x and concave in y, we define

$$V^* := \inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} g(x, y)$$

We further define an " ϵ -equilibrium" of g(.,.) as a pair \hat{x}, \hat{y} for which

$$V^* - \epsilon \leq \inf_{x \in \mathcal{X}} g(x, \widehat{y}) \leq V^* \leq \sup_{y \in \mathcal{Y}} g(\widehat{x}, y) \leq V^* + \epsilon$$

where \mathcal{X} and \mathcal{Y} are convex decision spaces of the x-player and y-player respectively.

Definition (Fenchel Game): To solve for $\inf_{x \in D} f(x)$, we define $g : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ as

$$g(x,y) := \langle x,y \rangle - f^*(y) = \langle x,y \rangle - \sup_{x' \in D} \{ \langle x',y \rangle - f(x') \}$$

and attempt to find an ϵ -equilibrium for g(x, y).

Proposition: An equilibrium for the Fenchel game function solves the minimization problem $\inf_{x \in D} f(x)$.

32

Proof: For an ϵ -equilibrium \hat{x}, \hat{y} of g defined as above, we have

$$\inf_{x \in D} f(x) = -\sup_{x \in D} \{-f(x)\} = -\sup_{x' \in D} \{\langle x', y \rangle - \langle x', y \rangle - f(x')\} =: h(y)$$

so that

$$\inf_{x \in \mathcal{X}} \left\{ \langle x, \widehat{y} \rangle - \sup_{x' \in D} \{ \langle x', \widehat{y} \rangle - f(x') \} \right\} \le h(\widehat{y}) \le \sup_{y \in \mathcal{Y}} \left\{ \langle \widehat{x}, y \rangle - \sup_{x' \in D} \{ \langle x', y \rangle - f(x') \} \right\}$$
hence

$$(*) |V^* - h(y)| \le 2\epsilon$$

where

$$V^* = \inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \left\{ \langle x, y \rangle - \sup_{x' \in D} \left\{ \langle x', y \rangle - f(x') \right\} \right\}$$

and as $\epsilon \to 0$ we have

$$V^* = \sup_{y \in \mathcal{Y}} \left\{ \langle \hat{x}, y \rangle - \sup_{x' \in D} \left\{ \langle x', y \rangle - f(x') \right\} \right\}$$
$$= \sup_{y \in \mathcal{Y}} \left\{ \langle \hat{x}, y \rangle - f^*(y) \right\} = f(\hat{x})$$

which follows from Proposition (Equivalence)

Corollary (mine): If (\hat{x}, \hat{y}) is an ϵ -equilibrium of the Fenchel Game as defined above, then

$$|f(\widehat{x}) - \inf_{x} f(x)| \le \epsilon$$

Proof: Follows from (*) above for $\epsilon' := \frac{\epsilon}{2}$.

Definition (Online Convex Optimization): Online convex optimization works as follows. At each round t (of T many), the learner selects a point $z_t \in \mathcal{Z}$ and suffers a loss $\alpha_t \ell_t(z_t)$ for this selection, where $\boldsymbol{\alpha}$ is the weight vector and $\mathcal{Z} \subset \mathbb{R}^d$ is a convex decision set of actions.

In general it is assumed that, upon selecting z_t during round t, the learner has observed all loss functions $\alpha_1 \ell_1(.), ..., \alpha_{t-1} \ell_{t-1}(.)$ up to but not including time t. An exception to this are the "prescient" learners (whose algorithms, marked with a "+" superscript, have access to the loss ℓ_t prior to selecting z_t) maintain knowledge of the t-th loss function.

Algorithm 1 Protocol for weighted online convex optimization

Require: convex decision set $Z \subset \mathbb{R}^d$ **Require:** number of rounds T **Require:** weights $\alpha_1, \alpha_2, ..., \alpha_T > 0$ **Require:** algorithm OAlg for t = 1, 2, ..., T do **Return:** $z_t \leftarrow OAlg$ **Receive:** $\alpha_t, \ell_t(\cdot) \rightarrow OAlg$ **Evaluate:** Loss $\leftarrow Loss + \alpha_t \ell_t(z_t)$ end for **Remark:** The "OAlg" referenced above refers to an algorithm performed within the current algorithm, and "OAlg^X" will refer to the algorithm updating the x coordinate in the Fenchel Game No Regret Dynamics.

Definition (regret): We define a learner's "regret" as

$$\boldsymbol{\alpha}\text{-REG}^{z}(z^{*}) := \sum_{t=1}^{T} \alpha_{t}\ell_{t}(z_{t}) - \sum_{t=1}^{T} \alpha_{t}\ell_{t}(z^{*})$$

where $z^* \in \mathbb{Z}$ is the "comparator" to which the online learner is compared. We further define "average regret" as that normalized by the time weight $A_T : \sum_{t=1}^T \alpha_t$ and denote it by

$$\overline{\boldsymbol{\alpha}\text{-}\operatorname{REG}}^z(z^*) := \frac{\boldsymbol{\alpha}\text{-}\operatorname{REG}^z(z^*)}{A_T}$$

Finally, "no-regret algorithms" guarantee $\overline{\alpha}$ -REG²(z^{*}) $\rightarrow 0$ as $A_T \rightarrow \infty$

Definition (online learning strategies): The following batch-style online-learning strategies modify the central algorithm Follow The Leader (FTL):

Algorithm 2 Online Learning Strategies Require: convex set \mathcal{Z} , initial point $z_{init} \in \mathcal{Z}$ Require: $\alpha_1, ..., \alpha_T > 0, \ell_1, ..., \ell_T : \mathcal{Z} \to \mathbb{R}$ $\operatorname{FTL}[z_{init}]: z_t \leftarrow z_{init} \text{ if } t = 1, \text{ else}$ $z_t \leftarrow \operatorname{argmin}_{z \in \mathcal{Z}} \left(\sum_{s=1}^{t-1} \alpha_s \ell_s(z) \right)$ $\operatorname{FTL}^+ z_t \leftarrow \operatorname{argmin}_{z \in \mathcal{Z}} \left(\sum_{s=1}^t \alpha_s \ell_s(z) \right)$ $\operatorname{FTRL}[R(.), \eta]: z_t \leftarrow \operatorname{argmin}_{z \in \mathcal{Z}} \left(\sum_{s=1}^t \alpha_s \ell_s(z) + \frac{1}{\eta} R(z) \right)$

Vishnoi Problems (work in progress):

1. Let $f^0, f^1, \ldots : K \to \mathbb{R}$ be a sequence of convex and differentiable functions, and $x^0, x^1, \ldots \in K$ a sequence of points where $x^0 := \operatorname{argmin}_x R(x)$ and $R : K \to \mathbb{R}$ is a convex regularizer. In this case, we define regret up to time T as

$$\operatorname{Regret}_{T} := \sum_{t=0}^{T-1} f^{t}(x^{t}) - \min_{x \in K} \sum_{t=0}^{T-1} f^{t}(x)$$

and x^t is defined as follows (as in FTRL)

$$x^t := \operatorname{argmin}_x \left(\sum_{i=0}^{t-1} f^i(x) + R(x) \right)$$

We further assume that the gradient of each f^i is bounded everywhere by G and the diameter of K is bounded by D.

(a) We wish to show

$$\operatorname{Regret}_T \leq \sum_{t=0}^{T-1} (f^t(x^t) - f^t(x^{t+1})) - R(x^0) + R(x^*)$$

for all $T \in \mathbb{N}_0$ where

$$x^* := \operatorname{argmin}_{x \in K} \sum_{t=0}^{T-1} f^t(x)$$

Proof: We first use induction to show that

$$(*) \qquad \sum_{t=0}^{T-1} f^t(x^{t+1}) \le \sum_{t=0}^{T-1} f^t(x^T)$$

As a base case, for T = 1 we find

$$f^0(x^1) \le f^0(x^T)$$

as equality holds. We then assume the T-1 case (*) and observe

$$\sum_{t=0}^{T} f^{t}(x^{t+1}) \le f^{T}(x^{T+1}) + \sum_{t=0}^{T-1} f^{t}(x^{T}) \le \sum_{t=0}^{T} f^{t}(x^{T+1})$$

Then, since we have

$$\sum_{t=0}^{T-1} f^t(x^T) + R(x^T) \le \sum_{t=0}^{T-1} f^t(x^{T+1}) + R(x^{T+1})$$

To show

$$\sum_{t=0}^{T-1} f^t(x^{t+1}) - \min_x \sum_{t=0}^{T-1} f^t(x) \le R(x^*) - R(x^0)$$

we first prove

As a base case, observe that

$$f^{0}(x^{*}) + R(x^{*}) \ge f^{0}(x^{1}) + R(x^{1}) \ge f^{0}(x^{1}) + R(x^{0})$$

Then, as an inductive hypothesis suppose

$$\sum_{t=0}^{T-1} f^t(x_T^*) + R(x_T^*) \ge \sum_{t=0}^{T-1} f^t(x^{t+1}) + R(x^0)$$

where $x_T^* = \operatorname{argmin}_x \sum_{t=0}^{T-1} f^t(x)$. In this case, we have that

$$\sum_{t=0}^{T} f^{t}(x^{*}) + R(x^{*}) \ge \sum_{t=0}^{T} f^{t}(x^{T+1}) + R(x^{T+1})$$
$$\ge f^{T}(x^{T+1}) + \sum_{t=0}^{T-1} f^{t}(x^{*}_{T}) + R(x^{0})$$

(b) Given an $\epsilon > 0$, we now use this method for

$$R(x):=\frac{1}{\eta}||x||_2^2$$

such that

$$\frac{1}{T} \operatorname{Regret}_T \le \epsilon$$

Proof: We wish to find T and η for which $\mathrm{Regret}_T \leq |f^0(x^0) - f^{T-1}(x^T)| + R(x^*) - R(x^0) \leq \epsilon T$

$$\Rightarrow \frac{1}{T} \left(|f^0(x^0) - f^{T-1}(x^T)| + \frac{1}{\eta} (||x^*||_2^2 - ||x^0||_2^2) \right) \le \epsilon$$

Hence, we choose $\eta = \frac{D}{G}$ and $T = \frac{2GD}{\epsilon}$ so that

$$\frac{1}{T} \left(|f^0(x^0) - f^{T-1}(x^T)| + \frac{1}{\eta} (||x^*||_2^2 - ||x^0||_2^2) \right)$$
$$\leq \frac{\epsilon}{2GD} \left(G||x^0 - x^T||_2 + \frac{G}{D} ||x^* - x^0||_2^2 \right)$$
$$\leq \frac{\epsilon}{2GD} \left(GD + GD \right) = \epsilon$$

Lemma (Legendre): For convex and differentiable f, we have

$$y^* = \operatorname{argmax}_y(\langle x, y \rangle - f(y)) \iff x = \nabla f(y^*)$$

Definition (First-order oracle): A first-order oracle for a function $f : \mathbb{R}^n \to \mathbb{R}$ is a primitive that, given $x \in \mathbb{Q}^n$, outputs the value $f(x) \in \mathbb{Q}$ and a vector $h(x) \in \mathbb{Q}^n$ such that, for any $z \in \mathbb{R}^n$,

$$f(z) \ge f(x) + \langle h(x), z - x \rangle$$

so $h(x) = \nabla f(x)$ for f differentiable, else it is a subgradient of f at x.

Definition (BESTRESP⁺[ℓ]): This strategy, for prescient learners, is simply given by

$$\operatorname{argmin}_{z \in \mathcal{Z}} \{\ell_t(z)\}$$

Definition (FW): The Frank-Wolfe method accesses a linear optimization oracle and remains within the domain D:

Algorithm 3 Frank-Wolfe Method and its FGNRD equivalent

Require: L-smooth (Lipschitz constant L) function $f(\cdot)$ Require: convex domain $D \subset \mathbb{R}^d$ Require: arbitrary w_0 , iterations T FW (iterative) $\gamma_t \leftarrow \frac{2}{t+1}$ $v_t \leftarrow \operatorname{argmin}_{v \in D} \langle v, \nabla f(w_{t-1}) \rangle$ $w_t \leftarrow w_{t-1} + \gamma_t (v_t - w_{t-1})$ FGNRD Equivalent $g(x, y) := \langle x, y \rangle - f^*(y)$ $\alpha_t \leftarrow t$ OAlg^Y := FTL[$\nabla f(w_0)$] OAlg^X := BESTRESP⁺[g]

Note that the FTL loss function at time t is $-g(x_t, \cdot)$ in this case, while the loss function for BESTRESP⁺ is $g(\cdot, y_t)$.

36

Proof of equivalence: To show the equivalence of the above FGNRD and Frank-Wolfe algorithms, we prove that the following three equalities hold at every time step t:

I.
$$\nabla f(w_{t-1}) = y_t$$
,
II. $v_t = x_t$,
III. $w_t = \overline{x}_t$

where $\overline{x}_t := \frac{\sum_{s=1}^t \alpha_s x_s}{\sum_{s=1}^t \alpha_s}$ is the weighted-average point produced by the dynamic.

We proceed by induction. As a base case, for t = 1 we have $\nabla f(w_0) = y_0$. Then, we show $I \Rightarrow II \Rightarrow III \Rightarrow I$ (for t + 1). For $I \Rightarrow II$ we have

$$\nabla f(w_{t-1}) = y_t \Rightarrow x_t = \operatorname{argmin}_{x \in D}(\langle x, y_t \rangle - f^*(y_t))$$
$$= \operatorname{argmin}_{x \in D}(\langle x, \nabla f(w_{t-1})) = v_t$$

For II \Rightarrow III, we note that

$$\overline{x}_{t} = \overline{x}_{t-1} + \gamma_{t}(x_{t} - \overline{x}_{t-1}) \Rightarrow \frac{\sum_{s=1}^{t} \alpha_{s} x_{s}}{\sum_{s=1}^{t} \alpha_{s}} = \frac{\sum_{s=1}^{t} \alpha_{s} x_{s}}{\sum_{s=1}^{t} \alpha_{s}} + \gamma_{t} \left(\frac{\sum_{s=1}^{t-1} \alpha_{s}(x_{t} - x_{s})}{\sum_{s=1}^{t-1} \alpha_{s}} \right)$$
$$\Rightarrow \gamma_{t} = \frac{\alpha_{t} \sum_{s=1}^{t-1} \alpha_{s}(x_{t} - x_{s})}{(\sum_{s=1}^{t} \alpha_{s})(\sum_{s=1}^{t-1} \alpha_{s}(x_{t} - x_{s}))} = \frac{\alpha_{t}}{\sum_{s=1}^{t} \alpha_{s}} = \frac{t}{\sum_{s=1}^{t} s} = \frac{2t}{t(t+1)} = \frac{2}{t+1}$$
so that $\overline{x}_{t} = w_{t}$ for $w_{0} = \overline{x}_{0}$. Finally, for III \Rightarrow I,

$$y_t = \operatorname{argmin}_y \sum_{s=1}^{t-1} \alpha_s(-g(x_s, y)) = \operatorname{argmin}_y \left(-\frac{1}{\sum_{s=1}^{t-1} s} \sum_{s=1}^{t-1} sg(x_s, y) \right)$$
$$= \operatorname{argmin}_y \left(\frac{1}{\sum_{s=1}^{t-1} s} \sum_{s=1}^{t-1} s(f^*(y) - \langle x_s, y \rangle) \right)$$
$$= \operatorname{argmin}_y \left(f^*(y) - \left\langle \frac{\sum_{s=1}^{t-1} sx_s}{\sum_{s=1}^{t-1} s}, y \right\rangle \right) = \operatorname{argmax}_y \langle \overline{x}_{t-1}, y \rangle - f^*(y) = \nabla f(\overline{x}_{t-1})$$
$$= \nabla f(w_{t-1})$$

from III, so we are done. Note that the penultimate equality is due to Lemma (Legendre).