NOTES AND SOLUTIONS TO MOHRI'S FOUNDATIONS OF
MACHINE LEARNING

LUCAS TUCKER

ABSTRACT. The following are a series of notes and solutions to Chapters 2, 3,
4, and 15 from Foundations of Machine Learning by Mehryar Mohri.
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2 LUCAS TUCKER

CHAPTER 2 NOTES

To show E[Rg(h)] = R(h), or that the expectation of empirical error over m
samples drawn from a distribution D is equal to generalization error, we have

~

1 m
Es..pm[Rs(h)] = - > Espm [Xe(w))#h(w)]
=1

= Es~pm, ze5Xe(x)£h(2)] = EonbD[Xe(@)#h(x)] = R(h)

Definition (PAC-learning): A concept class C is “PAC-learnable” if there exists
an algorithm A and a polynomial function poly(., ., ., .) such that for any ¢ > 0
and § > 0, for all distributions D on X and for any target concept ¢ € C,

PSNDm[R(hs) < 6] >1-96

where hg denotes the hypothesis returned by A after receiving the labeled sample
S. If A further runs in poly(1/e,1/4,n,size(c)) then C is said to be “efficiently
PAC-learnable” and A is deemed a “PAC learning algorithm for C”.

Theorem (Learning Bound — finite, H consistent): Let H be a finite set
of functions from X to ). Let A be an algorithm that for any target concept ¢ € H
and iid sample S returns a consistent hypothesis hg such that }A%g(hs) = 0. Then
for any €,§ > 0,

m > %(log |H| + log %)
= Pg.pm[R(hs) <€ >1-9§

Proof: Fix e > 0 and consider H := {h € H : R(h) > €}. Then, P[Rs(h) = 0]
(1 —¢)™ for S ~ D of size m. Hence,

P[3h € H. : Rs(h) = 0]

=P[Ry (hl) =0V Rg(hg) =0V..VRs(H]) = 0]
< Z ) =0] < |H|(1— )™ < [H]e ™
eH.

IN

= Pgpm[R(hs) < €] = Plhs & H. |R5(hs) =0] =1-Plhs € H. |R5(hs) =0]>1-¢

Corollary 2.10: Fix ¢ > 0. Then, for any hypothesis h : X — {0, 1}, we have
Ps~pn[Rs(h) — R(h) > ¢ < e72m¢

and R
Ps~pm[Rs(h) — R(h) < —¢] < e 2™

hence R
Pspm|[|Rs(h) — R(h)| > €] < 2e~2™¢

t2(b—a)?
8

Proof: Use Hoeffding’s Lemma (E[e!X]
technique (P[X > ¢ = Ple!X > el

) and the Chernoff Bounding

<e
< e *Ele!X]) for Hoeffding’s Inequality
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—2¢2

(PIX — E[X] > € < eZZii=®)® for X = > X; with X; € (a;,b;)). Note

that here Rg(h) = L | Xh(x)#e(x) SO that the value 0" (a; — b;)? in this case
is equal to 31" (02 =m . L = L
Corollary 2.11 (Generalization Bound): Set 2¢=2m¢* — § in the previous

part.

Theorem 2.13 (Learning bound — finite, H inconsistent case): Let H be a
finite hypothesis set. Then, for any é > 0 and any h € H, we have

log |H| + log 2

R(h) < Rs(h) + | =

P

]>1_5

Proof: We find that
P[3h € H : R(h) — Rg(h) > €]

=P[(R(h1) — Rs(h1) > €) V...V (R(hp|) — Rs(hpp)) > €)]

M)
< S PR(h:) — Rs(hs) > €] < 2[H[e™2m

i=1
so then

5
) | —log 517 log |H| + log 2
6 = 2 —Qmez —2 2 — 1 E— P — )
[H|e = —2me og ] =e 5 o

Definition (Agnostic PAC-learning): Let H be a hypothesis set. Then, A is an
agnostic PAC-learning algorithm if there exists a polynomial function poly(.,.,.,.)
such that for any €, > 0 and any distribution D over X x ),

11
> -, = i m — mi <e>1-—
m > poly(e, 57n,sme(c)) = Pg..pm[R(hs) min R(h)<e>1-90
Note further that if A is poly(2, $, n,size(c)), it is said to be an “efficient agnostic
PAC-learning algorithm”.

Definition: A scenario is “deterministic” if the label of a point can be uniquely
determined by some measurable function f : X — ) with probability 1.

Definition (Bayes Error) Given a distribution D over X x ), the Bayes Er-
ror
R = inf  R(h)
h:X—=Y
h measurable
satisfies R* = 0 in the deterministic case, and R* # 0 in the stochastic case. A
hypothesis & with R(h) = R* is called a “Bayes classifier”.

Ch. 2 Exercises.
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2.2. An axis-aligned hyper-rectangle in R™ is a set of the form [ay, b1] X ... X [ay, by].
Suppose the set of all instances belong in & = R™ and C is the set of all axis-aligned
hyper-rectangles in R™.

Let R € C be a target concept and fix € > 0 so that P[R] > € (or else the algorithm
presented below works immediately). Let aq,...,a, and by, ..., b, be 2n real values
defining R = [a1,b1] X ... X [an,by]. We then define rectangles on the perimeter as
Ri,O = [al, bl] XX [Ti, bz] XX [an, bn] and Ri71 = [al, bl] X... X [ai, T'i] X... X [an, bn}
such that r; = inf{r € R: P[la1,b1] X ... X [a;,7] X ... X [an, bn]] > 55}

We define our algorithm A as returning the tightest axis-aligned hyper-rectangle
Rg containing the points labeled with 1. If R(Rg) > €, Rg must miss at least one
rectangle R; so that

n 1 n 1
Ps.pm [R(Rs) > 6] < PSNDW[U U{RSmRi,j = @}] < Z ZPSN’D"‘ [{RgﬂRi,j = @}]
i=1;=0 i=1 j=0

n
€

< 2(1 - i)m =l — —)" = InemIos(1=55) < 9pe— B
2n 2n
i=1

Hence,
me 2n

2
0 > 2ne 2 <= mZ—nlogF
€

so that C is PAC-learnable.

2.3. Let X = R? and consider the class C of concepts of the form ¢ = {(z,y) :
2% 4+ y? < r?} for some r € R. We fix C € C as a target concept, along with an
€ > 0, and we define our algorithm 4 as that which returns the infimum of circles
containing the points labeled with 1. We denote this infimum as Cg.

We then define the circle Cy as Cy = argmax o {P[c\Cs] : P[c\C;] < €}. Therefore,
if R(Cs) > ¢, then Cg N Cy = 0, so that
Pgpm [R(Cs) > 6] < Pgopm [CS NCy = @] = (1 — e)m <e ™€

Hence,

_ 1 1 1
6>e ™M — logggme — mZ(f)logS
€

as desired.

2.4. Let X = R? and consider the set of concepts of the form ¢ = {z € R? :
||z — z0]| < r} for some zo € R? and r € R. Suppose the target concept ¢y € C
has P[co] = k& > 0 and radius 7o for some k,79 € R. If p € 11 Nry and £ € R? is a
line which passes through the intersection 1 N ry, we consider a translation of the
circle along ¢ from p toward the center of the circle. In particular, a translation
¢’ 1= ¢o+ 7 intersects each of the three regions r; yet maintains an error of at least

% so that Gertrude’s method does not work.
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2.6. Consider now the case where the training points recieved by the learner are
subject to the following noise: points labeled positively are randomly flipped to
negative with probability less than 7' < 1/2. We again consider the algorithm A
which returns the tightest rectangle containing positive points.

a) For a target concept R we can again assume P[R] > e. Now suppose that
R(R’) > e. Then, the probability that R’ (due to .A) misses a region r; for j € [4]
is at most (1 — i)m”, for a sample S of size m.

b) Hence, P[R(R’) > ¢ < 4(1 — i)"”’l = 4emn'los(1-5) < 4e="F so that & >

mn'e 4
4e~ 1" yields a sample complexity bound of m > dlog g

en’

2.7. Consider a finite hypothesis set H, assume that the target concept is in H and
that the label of a training point received by the learner is randomly changed with
probability 7 € (0, 3) where n <7’ < 3.

a) For any h € H, let d(h) denote the probability that the label of a training
point received by the learner disagrees with the one given by h. Let h* be the tar-
get hypothesis. Since the learner will error with probability 1 (assuming R(h) = 0),
we have d(h*) = n.

CHAPTER 3 NOTES

Definition: We define G := {g : (z,y) — L(h(z),y) | h € H} as a family of loss
functions L : X x Y — R and let Z := X x ). Note that many results below hold
for arbitrary loss functions L : )Y x )Y — R.

Definition (Empirical Rademacher Complexity): Let G be a family of func-
tions mapping from Z to [a,b] and S := (z1, ..., z;,) a fixed sample in Z. Then, the
Rademacher complexity of G with respect to sample S' is given by

> 1 - g-gs
Rs(G) = Ec,{sup— aig(zi)] = Eg[sup 7}
geg m ; geg m
where o := (01, ...,0,,)T with independent uniform random variables (Rademacher
variables) o; € {—1,1}, and gg := (g(21), .., g(zm))T.

Definition (Rademacher Complexity): Let D denote the distribution accord-
ing to which samples are drawn. For m € N with m > 1, we define

Rn(G) == Esupm[Rs(G)]

Intuitively, Rademacher Complexity measures how robust a class of loss functions
is, as a higher Rg(G) for a set S indicates a space of functions more adaptable to
arbitrary labelings.

Definition (Martingale Difference Sequence): A sequence of random vari-
ables V1, V5, ... is a martingale difference sequence with respect to X7, X, ... if for
any ¢ > 0, V; is a function of X1, ...X; and E[V;11]|X4,..., X;] = 0.
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Lemma D.6 Let V, Z be random variables such that E[V]Z] = 0 and for some func-
t202

tion f and constant ¢ > 0, f(Z) <V < f(Z)+c. Thent > 0= Ele!V|Z] <e™s

Proof: Repeat the proof of Hoeffding’s Lemma but with conditional expectations.

Theorem D.7 (Azuma’s Inequality): Let V;,V5,... be a martingale differ-
ence sequence with respect to random variables X, Xs,... and assume that for
any ¢ > 0 there exists ¢; > 0 and a random variable Z;(Xy,..., X;_1) such that
Z; <V; < Z;+ ¢;. Then for any € > 0 and m € N,

m _ 922
P[Zvi > € < et
=1
and

—2¢2

m
P Vi< —d<emind
=1

Proof: Using Lemma D.6, we find that S, := > ., V; we have that P[S,, > €] =
1202
PletSm > et€] < e EletSm] = et Ele!Sm-1|E[etVm | X1, ..., X;p_ 1] < et E[et9m-1]e™s™ <
+2 sm 2

e~te—% . We then choose ¢t = ,fiecz and repeat for the other inequality.

i=1"1%

Theorem D.8 (McDiarmid’s Inequality) Let Xi,...,X,, € X™ be a set of
m > 1 independent random variables and suppose there exists ci, ..., ¢, > 0 such
that f: X™ — R satisfies

(@1, s Ty ooy m) — F(X1, e Ty oy <

for any i € [m] and 1, ..., Ty, 2 € X™. Then for f(5) = f(Xi,..., X,n) and any
e > 0 we have

and

Proof: We define variables V. = f(S) — E[f(S)] and V;, = E[V|Xy,..., Xi] —
E[V‘Xl, ~-~7Xk:—l]~ Then, E[Vk|X1, ...,Xk_l] = E’[Fj[‘/|)(17 ceey Xk]—E[V|X1, ---an—l]th ~--7X/€—1]
0 so that the V} are a martingale difference sequence. Then, we define

Lk = 1HfE[V|X1, ceey kal,id - E[V|X1, ~~~7Xk71]

and
Uk = sup E[V|X1, ceey Xk,hx] - E[V|X17 ~~~7Xk71]

so that Uy, — Ly <sup, ,» E[V[X1, ..., Xp—1,2] — E[V[X1, ..., Xg—1,2] < cx so that
Ly < Vi < L 4 ¢ and we may apply Azuma’s Inequality.



and g € G we have
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Theorem 3.3 For G a family of functions mapping Z to [0,1], for any § > 0

7
P

m

Elg(2)] < —

log &
i)+ 2%, 21 >1-94
i D00+ 2 @)+ Qm]
P Blo(e)) < =3 o) + 2@ + 3¢ 2 | 215
9(z)] = m i=19 Zi S om | =
Proof: For any sample S = (21, ..., zy) and g € G, denote Eg[g] := Ly 9(z).
We then define ~
@(5) = sup(Elg] - Esg])
g€eg

Let S, 5" be two different samples (differing by z,, in S and z
®(5") — @(S) < sup(E[g] — E[g]

9e€g

/. in S’) so

Eslg] + Eslg]) < sup
Repeating the argument for ¢(S’)

McDiarmid’s Inequality we have

1
S J—
geg m m
#(S), we get |®(S) — ®(S')] < L. Then, by
P[®(S) — E[®(S)] < ] < et mz = e~ 26°m
. Note further that
6 o —262m _ log%
5 =e = €= o
. Then,
Es[®(S)] = Es[sup(Elg] — Eslg))] = Es[sup(Es[Es'[g] — Eslgl))]
g€eg g€eg
< Es s [sup(Es/|g] — E

g9l — Eslg))] =
g€y

= ES,S’ SUP (71 z)))]
22 ;

Z Uzg Zz

We then note that, for sets S and S’ dlffermg by one pomt

< Esr o[sup(— Zozg +Esasup
9€g m =1

- Qmm(g)

= = 1
Rs(0) - Re (@) <
so again by McDiarmid’s we have
PR, (G) — R/ (G) > ] < e72me
hence
)
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Lemma 3.4: Let H be a family of functions taking values in {—1,1}, and let
G be a family of loss functions ”associated to H for the zero-one loss”, i.e. G =
{(z,y) = Xn(@)£y | h € H}. For any sample S = ((21,91), .-, (Tm,Ym)) of elements
in X x {-1,1}, let Sx = (21,..., ). Then, ﬁs(g) = %DA‘{SX(/H)

Proof: We have that

R g - [sup (— i Xh(x:)4y;
s(G) = Eo[sup E 1: iXh(x:)#y:)
oo1- h(x;)y; 1 i
= FE,[— sup o; = FE,[— sup o; — h(z;)y;
303 ) = el sup(3 o1 = hteiui)

Theorem 3.5: For a family of functions H taking values in {—1,1} and D a
distribution over X (the input space), then for any § > 0 and any h € X, over a
sample S of size m drawn according to D, we have

. log 5

P|R(h) < Rg(h) + R (H) + >1-90
2m
~ ~ log%

P|R(h) < Rg(h) +Rs(H) +3 >1-6

Proof: We consider the functions g : (z,y) — 1p(2)2y so that E[g(z)] = R(h) and

Rg(h) = Ly 9(z). Further, 5\%5(9) = %ﬁ\%sx (H) so that R,,(G) = $Rm(H).
We then combine Theorem 3.3 with Lemma 3.4.

Note:

m

Rs(H) = E,[sup —zm: —o;h(x o[ inf — Za, z;)]

herH M P hEH m

which then calculates the negative expectation over sigma of “empirical risk mini-
mization”, which is computationally hard for some H.

Definition: The growth function IIy; : N — N is defined as
My (m) = ( max  |{h(z1), ..., h(zm)} : h € H]

T1yeesTm ) C

where each such distinct classification is referred to as a “dichotomy”.

Maximal Inequality: Let Xi,...,X, be n > 1 real-valued random variables

such that, for any j € [n] and ¢t > 0, E[e!Xi < e#} for some r > 0. Then,
E[max;epn) X;] < rv2logn
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Proof: We have that

then for ¢ = 7@%",

E[max X;] <
j€[n] t

=ry/2logn

Corollary D.11: Let X, ..., X,, be n > 1 real-valued random variables such that,
for any j € [n], X; = >°i" | Yi;. Suppose that for fixed j € [n], ¥;; are indepen-
dent, zero mean random variables taking values in [—r;, ;] for some r; > 0. Then,
Elmaxep, X;] < v/2log(n) 3;7, 77

Proof: We find that

HE tY” <H (2, )2
a [

hence

2
E[eth] < t%i "3

so that we may apply the Maximal Inequality for r = /> " r2

i=1"1

Theorem 3.7 (Massart’s Lemma): Let A C R™ be a finite set such that
7 :=maxzca ||z||2. Then,

1 bup Z o] < TY21o8 4]

meA m

where the o; € {—1,1} are independent uniform random variables and 1, ...,z
are components of x.

Proof: Apply Corollary D.11 to X; = L >oiy oixh for i € [|A[], noting that each
ozl € {—|zf], 2]} hence Y77 [a]* < 2.
Corollary 3.8: Let G be a family of functions taking values in {—1,1}. Then,

2logIIg(m)
m

R (G) <

Proof: For a fixed sample S = (21, ..., 21 ), we have

R (G) = {sup—Za, 2 } < vmy/2log g (m)

m m
9€9 =1

so the expectation is bounded similarly.
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Corollary 3.9: For a family of functions H valued in {—1,1}, for any § > 0

and any h € H,
R(h) gﬁ /210gHH Hogél S1-

where we use the Rademacher complexity bound from Corollary 3.8 and Theorem
3.5.

P

Definition: A set S of m > 1 points is “shattered” by a hypothesis set H if
H realizes all possible dichotomies of S, i.e. Il (m) = 2™.

Definition (VC-dimension): The VC-dimension of a hypothesis set H is the
size of the largest set that can be shattered by H, i.e.

VCdim(H) = max{m € N : IIy;(m) = 2"}

Example: Consider the d + 1 points z; := (0, ...,1,...,0) for ¢ € {0,1,...,d} where
the 1 is in the é-th position and z( is the origin. Further, let w = (yo,y1, .-, Yd)
where y; € {—1,1}. Then, the hyperplane defined as
Yo
==0
w- T+ 9

satisfies
segn(w - x; + %) =y
for i € {1,...,d} and

Yo
sgn(w - xo + -) = Yo

2
hence the VC-dimension of hyperplanes in R is at least d + 1.

Definition: The convex hull conv(X) of X C RY is defined as
|X] | X

conv(X) = {Zaixi | Zai =1, 2, €X, a; > 0}
i=1 i=1

Radon’s Theorem: Any set X of d + 2 points in R? can be partitioned into
two subsets X} and X» such that conv(X;) N conv(Xs) # 0

Proof: Let X = {x1,...,7412} C R% We find that the system
d+2 d+2

Zaixi = 0, ZO@ =0
i=1 =1

has d+1 independent equations and d+ 2 unknowns, so that there exists a non-zero
solution Sy, ..., Bg42. Since Zf:f B; = 0, the sets

Jii={i€d+2]|6: <0}, Jo:={ic[d+2]|B >0}
are nonempty and they satisfy

> Biwi=—Y Bix

i€J1 i€J2
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so that

1
B = Zﬂi§BZﬂiIi
ISV 1€J1
belongs in the convex hulls of both X} and A5.

Theorem 3.17 (Sauer’s Lemma): Let H be a hypothesis set such that VCdim(#H) =
d. Then, for any m € N, IIy(m) < Z?:o (™

Proof: We proceed by induction. The statement holds for m = 1 and d = 1
or d = 0. Then, assume the statement holds for (m —1,d) and (m —1,d — 1). We
then fix a sample S of size m given by S = (21, ..., 2,,). Let G denote the space of
hypotheses due to S. Identifying each g € G with those z; classified as 1 (rather
than —1), let G; denote the space of hypotheses due to (z1, ..., Z;,—1) and let Gy de-
note those g € G such that if Z C {0,1}™~! is expressed among the {x1,...,2m_1},
$0 is Z U x,,. Hence, |G| = |G1| 4 |G2|- Since G; has VC dimension at most d while
G2 has VC dimension at most d — 1 (else G would also shatter a set of size d + 1 by
adding x,,). Therefore,

g (") (")
() () - ()

i=1 i=0
Corollary 3.18: Let H be a hypothesis set such that VCdim(#H) = d. Then,
d
for any m > d, Iy (m) < (%) = O(m?)
Proof: From Sauer’s Lemma, we have that

i <3 (7) <52 (7)1

=0

(2 ()G = o= ()

=0

Corollary 3.19: Let H be a family of functions taking values in {—1,1} with
VC-dimension d. Then, for any ¢ > 0,

~ 2dlog £ log 1
R(h) < R(h) + 1/ =t +vog5121_5
m 2m

Proof: Combine Corollary 3.18 and Corollary 3.9.

P

Definition (Relative Entropy): The relative entropy (or Kullback Leibler Di-
vergence) of 2 distributions p and ¢ is denoted D(p||q), and is defined by

Do) = By log X2 = 3~ p(a) log(2))

a@)) = 2 q(@)
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Sanov’s Theorem (D.3): Let Xi,...,X,, be independent variables drawn ac-
cording to some distribution D with mean p and support included in [0,1]. Then,
for p:= L 3™ X; and any g € [0, 1], we have

P[p > q] < e~mP@lla)
Proof: We have

P[> q < e "B = "M [ Bl < et (1 —p +pet)
=1

_ ((1 _p)e~9los o= pell=)los 2= )m — om(—qlog £ +(q—1)log 1=%)
where t > 0 is used for the Chernoff bound

Theorem D.4: Let X1, ..., X,, be independent random variables drawn according
to some distribution D with mean p and support included in [0,1]. Then, for any
v € [0, zlv —1], for p:= L 3" X;, we have

—m,p'y2
3

Pp>(14+v)p <e

and
—mp~y?

Pp<(1—-7)p <e 2

Proof: For ¢ = (1 +v)p,

p 1—p
D(q|lp) = 1 +v)plog m———+ (1 = (1 +)p) log —————
(allp) = (1 1)plog = o (1= (14 1)) log — 1
P
=—p(l+v)log(l+~)+(1—(1+~)p) log(l+ ——F———
(1) log(1 +9) + (L= (14 7)p)los(L + {17 —)
< (L+)p— +(1*p77p)¢:*w(1+ 2 —1):—7217 < 1P
- 1+3 1—p—7p 1+3 2+~ 3
For ¢ = (1 — v)p, we have
p 1-p
D(qllp) = (1 —~)plog ————— + (1 — (1 —v)p) log
(llp) = (1= )plog = (1= (1= )p)log 1—
= —p(1—7)log(1 —7) + (1 = (1= 7)p)log(1 — —~
1= (1 =7)p
<(d=p FA—pt ) —p(- L 1) xR TP
- 1-2 1—p+p 1-37 2—y~ 2

Theorem 3.20: Let H be a hypothesis set with VC dimension d > 1. Then,
for any m > 1 and any learning algorithm A, there exists a distribution D over X
and a target function f € H such that

d—1 1

P[Rp(hs, f) > %] 2 100
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Proof: Let X = {zg,...,2q_1} C X be shattered by H. For any € > 0, choose D
such that its support is reduced to X and so that one point (xq) has probability
1 — 8¢ with the rest of the mass distributed uniformly, i.e. Pplxg] = 1 — 8¢ and for
any ¢ € [d — 1], Ppla;] = d . Without loss of generality, A makes no error on z.
For a sample S, let S denote the set of its elements falling in {1, ...,z4_1} and let
S denote samples S of size m such that |S| < %. Fix S € S and consider the
uniform distribution ¢ over all labelings f : X — {0,1} (which are all in H since
the set is shattered). Then,

EpulRo(hs, D1 =) Ihs@zs@PRIPI1 2 Y Y Ihe(@y2s PllPlS]

I zex I z¢S

—1 8e¢
;P 23 5 g1 = 2e = Eryl[Eses[Rp(hs, f)]] > 2¢
xS

Hence Eses|[Rp(hs, fo)] > 2¢ for at least one labeling fo € H. Since Rp(hs, fo) <
Pp[X — {z0}], we have that

Eses[Rp(hs, fo)l = Y Ro(hs, fo)P[Ro(hs, fo)] + Y Ro(hs, fo)P[Rp(hs, fo)]

S:RD(hs,fo)Ze S:RD(hs,fo)<€
< Pp[X — {z0}|Pses[Ro(hs, fo) > €] + €(1 — Pses[Rp(hs, fo) > €])
Bis] _1

< TePses[Rp(hs, fo) > €| + €= = < Pgses[Rp(hs, fo) > €]

7 <
Then, for a set S = (z1,...,2y) of size m, define S, = 37", 1, . Since each
1,,ewx has an expected value of 8¢, the mean is 8em in this case. Then, for any

~v > 0, we use Theorem D.4 as

2
P[Sy, > 8em(1 4 7)] < e 35

hence

d—1 d—1 -
=D s s =B > D e et <1

1

1— e
for § < 155 < 2. Then, 1 — P|

S] — 78 so
P[S]

7
Note: Since there exists a distribution over X for which the error of the hypothesis
returned by A (with respect to a target function f) is bounded by C - 4, infinite

m’

VC-dimension indicates that PAC-learning in the realizable case is not possible.

76 <P[S] = 6 < < Psesllp(hs; fo) > €

Slud’s Inequality Let X be a random variable following the binomial distribu-
tion B(m,p) and let k be an integer such that p < % and kK > mp or p < % and
mp < k <m(1 —p). Then,

PX > k] > IF’[N >
mp(1 —p)

k—mp 1

where N is in standard normal form.
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Normal distribution tails: Lower bound: If N is a random variable following
the standard normal distribution, then for u > 0 we have

PN > u] > %(1— 1—6*“2>

Exercise D.3: Let x4 and g be random variables (coins), with Plz4 = 0] = 3 —%
and Plzp = 0] = 5+ 5, where 0 < € < 1 is a small positive number, 0 denotes heads
and 1 denotes tails. Consider selecting a coin € {x 4, x5} uniformly at random,
tossing it m times, and predicting which coin was tossed based on the sequence of

Os and 1s obtained.

a) Let S be a sample of size m. Consider playing the above game according to
the decision rule f, : {0,1}™ — {z4,2zp} defined by f,(S) = x4 if and only if
N(S) < %, where N(S) is the number of 0’s in sample S. Suppose m is even.
Then, this rule fails in the case that £ = x4 yet at least half of the flips were heads.
Hence,

error(fo) = Eg[Ppy [fo(S) # «]]
=Plz = za]Ppp [fo(S) # xa] + Plz = x5]Ppp [fo(S) # 5]

b) Again assuming m is even, we find that N(S) follows the binomial distribu-
tion B(m,p) for p = % — §, where m(% -5) <7< m(% + §). Hence, Slud’s

2
Inequality implies

%ﬂ% OG5 i

to which we can apply the lower bound for normal distribution tails as

IP’[NZ \;1‘(762} > 2(1— 1—e‘f’i"i)

P[N(S) > % ] > IP’[N >

hence
1 _ me2
error(f,) > 1 (1 -Vi-e 1*62)

c) If m is odd, then note that f, fails in the case that N(S) > & <= N(S) > [%].
Hence, N(S) effectively follows a binomial distribution (by adding an arbitrary
element to S) B(m~+1,p) for p = -5, where (m+1)(3-5) < [2] < (m+1)(3+5).
Using Slud’s Inequality and the lower bound for normal distribution with p = §
we have

l
2

[ mEL (4 1)p

1 m 1
§P[N<S) - 5} =27V = (m+1)p(1 - p)

1 V/
_lplyseymtl
V1—¢€?

2
1 _ 52(m+21) 1 _ 2(%1262
>f(1— 1—e 1o ):7<1— 1—e 1 )
4 4

Since the rightmost expression holds as the same bound in the even case, both m

odd and even share this bound.
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d) If the error of f, is to be at most 4, where 0 < § < %, then

27 M2

1 _2me _
521<1f 1—e 1*62):>(1745)2§176 e

1—¢2 m"<m+1

2218 <o (1—(1—45)2) = — 2626 log (1— (1—45)2> < [5

2

€ 1
> 1 1
M= Og(1—(1—45)2>

Note that ¢ - 0= m — o0

e) Now consider an arbitrary decision rule f : {0,1}"™ — {x4,zp}. Note that,
if f(S") = x4 on a particular outcome S’ with N(S) > % then the error of f on

S is at least %P[N(S) <2z = zA} > %P{N(S) > oy = xA}. Similarly, if
f(8") = x4 on an outcome S” with N(S) < & — 1, f errors on S’ with at least
%P[N(S) >3 —1\30::10,4} > %P{N(S) > \x:xA}, hence

1
error(f) > iP[N(S) > % |z = xA}
so that the lower bound in part d applies to all decision rules.

Lemma 3.21: Let o be a uniformly distributed random variable taking values

in {a_, a4}, where a_ = % —5and ay = %+ 5. Let S be a sample of m > 1

random variables X, ..., X,,, taking values in {0,1} and drawn i.i.d. according to
the distribution D, defined by Pp_[X = 1] = a. Then, if h : X™ — {a_,ay}, we
have

m

Eo[Poy [h(S) # o] > @ (2 M )

’VYL€2
for ®(m,e) = i(l —-\V1- 67m> for all m and e.

Proof: This follows from the previous exercise.

Lemma 3.22: Let Z be a random variable taking values in [0,1]. Then, for
any v € [0,1), we have

Bl -~

P[Z > 4] >
[Z>79] 2 T

> E[Z] —~
Proof: We find that
ElZ] < (D)(P[Z >]) + (M (P[Z <))

=PZ>4]+ (VA -PZ>1])= E[Z] -7 <P[Z>1](1-7)
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Theorem 3.23 (Lower bound, non-realizable case): let H be a hypothe-
sis set with VC-dimension d > 1. Then, for any m > 1 and any learning algorithm
A, there exists a distribution D over X' x {0, 1} such that

. d 1
Fs~om | Bip(hs) = inf Rp(h) > 4 mn} =

or equivalently, for any learning algorithm, the sample complexity verifies

m> ——=
~ 320¢?
Proof: Let X = {z1,...,24} C X be a set shattered by H. For any a € [0,1] and
any vector o = (071, ...,04)T € {—1,1}¢, we define a distribution D, with support
X x {0,1} as follows: for any i € [d],

ot =43+ %)

For i € [d], we define the Bayes classifier as
hp, (x;) = argmaxye{o’l}IP’[y | 4]
Note that hi, is in H since X is shattered. Further, for all h € H,

Rp,(h) = Rp, (hp,) = Ep, E Zlh(x);ﬁy] — Ep, E Zlh;}” (;c);éy}

reX reX

1 1 « 1 «

P> <<2+2>_(2_2)>1"(f e DILICV e
zeX :EEX

Let hg denote the hypothesis returned by the learning algorithm A after receiving

the labeled sample S drawn according to D,. Let |S|, denote the number of

occurrences of a point z in S. Let U denote the uniform distribution over {—1,1}4.

Then,

B g, [0, (hs) = B, 0ip)l] = 3 0 B grag, [Lnscorng, 0]

S~D7 Lo ¥

zeX
1 *
= > Bpu[Psp lhs(@) # b, (@)]]
mef
1 m N
= 2SS By [Poanylhs(e) # i, (1) 1], = ] B{S]. = n]
zex n=0

®(n+1,)P[|S|, = n] > é Z‘I’(%+1,a) :@(%H,a)
zeX

Q.M—‘

HMS

TEX T
Hence there exists o € {—1,1}% such that

Es.py [é[RDU(hS) - RDo(h;‘Do)]} > @(% +1, a)

By Lemma 3.22, for the same o and any v € [0, 1] we have

Py (o, (hs) — o, (i, )) 2 7] > (1 = 7)u
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for u = @(% + 1,a). If we bound ¢ < (1 —y)u and € < yau, then

Pspm [Rpa(hs) —Rp, () > €| > 6

For v =1 — 84, we have

1
6§(1—7)u<:>u2§
1 (B 4Da 1 1 (2 4+1)a?
— (1-V1i—e T )>7<:>7>1— a2
4( ¢ =8 1=
(2 +1)a? 3 m _1—-a?, 4
——E—=—>log- <= — < log - —1
1—a2 = 8% d= " a2 83

o
Hence a = 8 5 gives € = and

8
e (T s —1=1(3)

Then, to obtain a bound of the form % < it suffices to set

1
64>
(64)2 = f( = )2) Hence, for § = ¢, we have w = (6}1)2((72 —1)log3 — 1) ~ 555
so that €2 <

, since € <

W suffices.

Ch. 3 Exercises.

3.1. Let H be the set of intervals in R. The VC-dimension of H is 2, and its growth
function satisfies Iy (m) < > " (m—i+1)=m?+m— Y .

3.2. Let H be the family of threshold functions over the real line: H = {z —
l,<9 |0 € R}U{z — 1,59 |0 € R}. In this case, given m points in R, we can
exclude or include all, as well as include from opposite sides of the real line. Hence,
IL,,(H) <2+ (m — 1)(2) = 2m. Hence,
2log(2m)

m

R (G) <

3.3. We define a linearly separable labeling of a set X of vectors in R? as a clas-
sification of X into two sets XT and X~ with X* = {z € X |w -z > 0} and
X~ ={r € X|w x <0} for some w € RL. Let X = {z1,...,7,,} be a subset of R%.

(a) Let {X*+, X~} be a dichotomy of X and let x,,, 1 € R?. Suppose that {X+, X~}
is linearly separable by a hyperplane
w-z =0, weR?

passing through the origin and ., 11 = (2}, 1, ..., xﬁlﬂ). Then, since

d
fonﬂwi =0
i=1
there exist €1,e2 € R and 4,k € {1,...,d} for which w' := (w1, ..., w; £ €1,..., wq)

and w” := (wy, ..., wg £ €1, ..., wq) satisly

(w; £ el)xf;lﬂ + Zl’in+1wi >0
i#]
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(wy + 62)$Zn+1 + Z zh, qw; <0
itk
and w - x = 0 still separates {X*, X~ }.

Conversely, if {X+t, X~ U {zmy1}} and {XT U {zpms1}, X~} are linearly separa-
ble by hyperplanes, those hyperplanes separate { X+, X~ }.

b) Let X = {z1,...,2,,} be a subset of R? such that any k-element subset of X
with k& < d is linearly independent. Let C'(m,d) denote the number of linearly sep-
arable labelings of X. Then, we find that C(m + 1, d) counts the linearly separable
labelings in the m case for R%, and also double counts those cases in which the hy-
perplane (given by a vector w € R?) can intersect the m+1-th vector. In such cases,
the m + 1-th vector may belong to either X or X~ by part (a), thereby defining
two linearly separable labelings. Hence, C'(m + 1,d) = C(m,d) + C(m,d — 1). For
m =1, we have 1 = C(2,1) = C(1,1) + C(1,0) = 1 + 0. We may now inductively

assume
m-t 2 m—1
C(m,d)_QZ( L > C(m,dl)_QZ( L )
k=0 k=0
Then,

C(m+1,d) = 2§(m >+2d§(mk)

£ )£

c) Let fi, ..., f, be p functions mapping R to R. Define F as the family of classifiers
based on linear combinations of the functions:

P
F = {w — sgn(Zakfk(x)) 101, ..., 0p € R}
k=1

Define ¥ by ¥(z) = (fi(z), ..., fp()). Assume that there exists z1,..., 7, € R?
such that every p-subset of {¥(xz1), ..., U(z,)} is linearly independent. In this case,

Hr(m)=  sup  [{g(z1),....9(zm) : g € F}
{Z1,..Tm CRE

so since each set {g(x1),...,g(x,)} represents a linearly separable labeling of the
p-dimensional points {¥(z1), ..., V(zm)},

p—1
sup {g(x1),....g(@xm) : g € F} = 22 (ml_ 1)
i=0

{z1,....,xm } CRE

using part (b) and . Therefore,
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3.11. For an input space X := R™, we consider the family of regularized neural
networks defined by the following set of functions mapping X to R:

na
"= {H S wio(u;-a) : lwll < A, [luglla < A, for any j € M}
=1

where ¢ is an L-Lipschitz function (e.g. o could be the sigmoid function which is
1-Lipschitz).

a) We find that

m

9?15(7-[) = Ec,[sup 1 Zazh(xl)} = [sup — i n; o(uj-x; }

heH M “—] w,uy M

m 12 m

[prw] sup ZU’ o(u- xl}zﬁEU[ sup ZUiU(U'JSi)}

=1 ull2<AGZ m llull2<A 525

b) We now use the following form of Talagrand’s lemma valid for all hypothesis
sets ‘H and L-lipschitz functions ®:

1 - L.
—FE, | sup o;(Poh)(x; < — sup oih(x;
m heH ; ( ) )1 m heH Z ]
so that
Fem) < Mg [ s Zm: ( )] <NLE,| s Z
S > o up O\U-T5)| > o up — o;h m
m - a0 AP
= NLRs(H)

¢) We then find that

i T

1
E, —Hu
m

2]
d) By Jensen’s inequality, we have

Eu[l[oll2) < 4/ Eullv][3]

J

E)AQS(H’) =F, [Sup % i ois(u - ZEZ)} =
85 i=1

i T

hence

A
Rs(H') < —

]

m
E 0iZq
i=1
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e) If for any = € S we have ||z||2 < r for some r > 0, then

<i|0i$i||2)2> < A’L(%(mr}) = ANALr

3.27. Let C be a concept class over R" with VC-dimension d. A C-neural network
with one intermediate layer is a concept defined over R™ that can be represented
by a direct acyclic graph in which the input nodes are those at the bottom and in
which each other node is labeled with a concept ¢ € C.

Re(H) < A’L(A

The output of the neural network for a given input vector (x1,...,x,) is obtained
as follows. First, each of the n input nodes is labeled with the corresponding value
x; € R. Next, the value at a node v in the higher layer (labeled with ¢) is obtained
by applying ¢ to the values of the input nodes admitting an edge ending in u. Since
c€{0,1}, u € {0,1}. The value at the top (output) node is obtained similarly by
applying the corresponding concept to the values of the nodes admitting an edge
to the output node.

a) Let H denote the set of all neural networks defined with k > 2 internal nodes.
Let II¢(m) = max,, .. . cre [{(c(#1),...,¢(zm)) : ¢ € C}| denote the growth func-

k41
tion of the concept class C. We then have Iy (m) < (Hc(m)> if there are k
intermediate nodes and 1 final node.

b) Since M3 (m) < Te(m)¥*1, by Sauer’s Lemma we have

em\ 4 em d(k+1)
< |(— < (=
e (m) < ( d) = Iy (m) < ( d)
so that
mi=2(k + 1)dlogy(ek +€) = m > d(k+1) log, (<)
hence

5 em d(k+1)
mo>
()

so since we must have

. em*\ d(k+1)

2" < ()
d

for the VC-dimension m*, we have that

VCdim(H) < 2(k + 1)dlogy(ek + €)

¢) Let C be the family of concept classes defined by threshold functions C =
{sgn( 22:1 wja:j) TwE R”}. In this case, VCdim(C) = r since the r-dimensional
vectors with 1’s in the i-th spot may be shattered but not the origin g (since C
does not involve a term added to the dot product. Hence,

VCdim(H) < 2(k + 1)rlogy(ek +¢e)
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3.31. Let H be a family of functions mapping X to a subset of real numbers
Y C R. For any € > 0, the “covering number” N (H,¢€) of H for the L., norm
is the minimal k& € N such that H can be covered with k balls of radius e, i.e.
there exists {h1,...,hx} C H such that for all h € H there exists ¢ < k with
[[h = hillso = maxzemex |R(z) — hi(x)| < e. Hence, when H is compact, the finite
subcover due to an € covering of H indicates that A (H, €) is finite.

Let D denote a distribution of X x) according to WhiC/l\l labeled examples are drawn.
Then, for h € H, R(h) = E(; ) ~pl(h(z) — y)?] and Rg(h) = L 3" (h(z;) — y;)?

T~ m

for a lebeled sample S = ((z1,y1), -y (Tm,Ym)). Suppose H is bounded and that
there exists M > 0 such that |h(z) —y| < M for all (z,y) € X x Y.

a) Let Lg(h) = R(h) — Rg(h). Then, we find that

D (haai) =)= (ha () -0’

L)~ Ls(h)| = | Bl(hs(2)—)*~(ha(a) )"+

m

= ’E[hl(I)Q*th(ﬂf)y*(hQ(x)Q*?hz(I)y)H% Z ha (23)2 —2h (2:)yi— (ha(2:) —2ha (z:)y:)

= ‘E[(fn(%) — ha(2))(ha(2) = y) = (ha(x) = M () (h2(2) — y)l+

S o) — b)) — ) — (hali) — P ) (o) — )

i=1

< MRy (2) — ha(a))| + [ME[ha(a) — bn (@] + - > 20 maas s (1) ~ ()
<AM[hy — bl

b) Assume that #H can be covered by k subsets By, ..., Bg, i.e. H = B U...UB.
Fix ¢ > 0. We then have that

Pgpm [sup \Ls(h)| > e] = Pgpm [ sup |Ls(h)| > €V ...V sup |Ls(h)| > e]
heH heB; heBy

k
< Pgpm [ sup |Lg(h)| > e}
> sup [Ls(h)

by the union bound.

c) We then let k = N(H, g§7) and let By, ..., By be balls of radius gj; centered
at hy,...,hy covering H. Fix i € [k]. Note that if A’ := argmax; .5 [Ls(h)|, then
since

€
Ls(W) — Ls(hs)] < AMIW ~ hilloe < 5

we have
|Ls(h)] > e = |Ls(hi)| >

[NCN e

hence

Pgpm [ sup |Ls(h)| > e] < Pspm
heB;

—

€
Ls(hi)| > B




22 LUCAS TUCKER

so by Hoeffding’s Inequality and part b),

k
Pspm {sup |Ls(h)| > 6} < ZPSNDm [ sup |Lg(h)| > e}
heH i—1 heB;

b k
¢ D €
< D Psapn|[Ls(h)] 2 5| = S Pswpn |IR(N) — Rs(h)] 2 5
=1 |
LTS ]
< ok TR (W, )

CHAPTER 4 NOTES

Definition: A standard algorithm to bound estimation error is Empirical Risk
Minimization (ERM):

hEtM — argminheﬂﬁs(h)

Proposition 4.1: For any sample S, the following inequality holds for the hy-
pothesis returned by ERM:

P[R(thM) — inf R(h) > e} < P[sgg IR(h) — Rs(h)| > g}

Proof: We find that
ERMy _ - < ERMy _ » (7 ERM . _ P (1 ERM
¢ <R(hg™) — inf R(h) < |R(hg™™) — Rs(hs™)| +| inf R(h) — Rs(hs™™)]

so at least one of the terms on the right hand side exceeds §, hence

~ €

sup |R(h) — Rs(h)| > 5
heH

satisfying

P[R(thM) — inf R(h) > e} < P[sgg IR(h) — Rg(h)| > %}

Definition: Regularization-based algorithms consist of selecting a family #H that
is an uncountable union of nested hypothesis sets H., i.e. H = U7>0 H.,, and H is
often chosen to be dense in the space of continuous functions over X. Often there
exists R : H — R such that, for any 7 > 0, the constrained optimization problem

argmin7>0,heHR5(h) + pen(y, m)

log vy
m

where pen(y, m) refers to a penalty term such as R, (H~) + , can be written

as the unconstrained optimization problem
argminheﬂfis(h) + AR(h)

for some A > 0. Note that R(h) is a “regularization term— and X is treated as a
“regularization” hyperparameter (optimal value not known). Larger A helps penal-
ize more complex hypotheses while A =~ 0 coincides with ERM. Cross-validation or
n-fold cross-validation help select a value for .
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Remark: Solving the ERM optimization problem is often NP-hard since the zero-
one loss function is not convex, hence using a convex “surrogate” loss function can
help upper bound the zero-one loss. In particular, for real-valued h : X — R, we

denote the binary classifier
1 h(xz) >0
fule) = { (2) >

-1 h(z)<O0
and define the expected error R(h) as

(
R(h) = E(x,y)ND[lfh(x)?ﬁy]

For any « € X we write n(z) := Ply = 1]z]. For Dy the marginal distribution over
X and any h, we then have

R(h) = E(zy)~p[lp,(2)2y] = Eonpy [n(x)1h<z><o +(1- n(fc))lh(ac)zo}

We then define the “Bayes scoring function” h* : X — R as

where
R* := R(hY)

denotes the error of the Bayes scoring function.

Lemma 4.5: The “excess error” of any hypothesis h : X — R can be expressed as

R(h) = R* = 2E;~p, | |0 (2) [ 1n(2)ne (2)<0

Proof: For any h we have
R(h) = Egnpr (@) 1n)<o + (1 = n(2))1n(2)>0]
= Ernp [1(@)1n(z)<0 + (1 = 0(@))(1 = 1h()<o0)]
= Eonpa [20(2)1n)<0 + 1 = 1ny<o — ()]

= Epnpy 207 (2) L2y <0 + (1 — n(x))]
so that
R(h) — R* = 2E,;p, [V (2) 112y <0 — P (2) 1p+ () <0)

= 2B D [Lh(@)he () <olh" (7)]]

Definition: Let ® : R — R be a convex and non-decreasing function so that
for any u € R, 1,<0 < ®(—u). The “®@-loss” of a function h : X — R at a point
(z,y) € X x {—1,1} is defined as ®(—yh(x)) and its expected loss is given by

Lo (h) := E(gy)~p[®(—yh(z))]
= Epnp [n(2)(=h(2)) + (1 = n(x)) @ (h(z))]
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Note that 1,<¢ < ®(—u) = R(h) < Lg(h).

Definition: We further define v — Lg(z,u) for any x € X and u € R as

Lo (2, u) = n(z)®(-u) + (1 —n(z))®(u)
so that Lg(h) = Eyupa.[Lao(z,h(x))] Note that since ® is convex, so is u
Lo(x,u).

Definition: Let b} : X — [—00, c0] denote the “Bayes solution for the loss function
Lg”, i.e. h%(x) solves the convex optimization problem:

hg(x) = argming e (_ o o) Lo (z,u)
Note that this solution may not be unique. We lastly define
Ly = By y)~p[P(—yhs(2))]
Proposition 4.6: Let ® be a convex non-decreasing function with ®'(0) > 0.

Then, for any z € X, hj(z) >0 < h*(z) > 0and h*(z) =0 < h}(z) =0,
hence £} = R*

Theorem 4.7: Let ® be a convex and non-decreasing function. Assume that
there exists s > 1 and ¢ > 0 such that the following holds for all x € X :

¥ (2)* = In(z) = %IS < [La(2,0) — La(x, hg(z))]

Then, for any hypothesis h, the excess error of h satisfies

R(h) — R* < 2¢(Lq(h) — £3)*

Proof: First note that, for sgn(h) # sgn(h*)

(*) n(2)®(0) + (1 = n(x))2(0) = (0) < n(2)(®(=h())) + (1 —n(x))@(h(z))

as h > 0 for n(z) < 3 and h < 0 for n > 3,

decreasing derivative.

and @ is non-decreasing with non-

We find that
R(h) = R* = 2Es p [|P* (€)1 @)h= (2) <o)

< 2B, py[c(La(7,0) — La(z, hfﬁ'(‘r)))%lh(w)h*(ac)gd
= 2cE;npy[((Lao(2,0) — La(z, hfp(JL‘)))1h(ac)h*(a;)go)é

. 1. .
and since x — x5 is a concave function for s > 1,

]
< 26(Eppy [(La (2, 0) = Lo (2, 3 () Lnyne (r)<0]) *
By (*) we then have

1

< 2¢(Eynpy (Lo, h(2)) — Lo (2, hg (%)) Ln(z)n- (z)<o0)) *

so since since Ly (x, h(z)) > Lo(z, hl(x)) for any h,
< 26(Epnpy Lo (2, h(2)) = Lo (2,3 ()])* = 2e(La(h) = L3)*
Ch. 4 Exercises.
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4.1. We find that, for any h € H, Rg(hERM) < Rg(h), hence Egpm [Rg(hERM)] <
infhey ESN’D’" [Rs(h)} Further, R(hg‘RM) > infheq.[ R(h) for any S ~ Dm, hence
infrew Es~pm|[Rs(h)] < Es~pm[R(hG*M)]

4.2. Let ®(u) = (1 + u)?, so that ® is non-decreasing on [—1, 00| and convex with
®"(u) = 2 > 0. We observe that

(@)@ (~u) + (1= n(2)@(u) = (1+u)® - dn(z)u
so for n =0,
2 1 L2 . 2
()" = 7 = (5)°(1 — inf((1 +u)%))
For n = % we have

1—inf,(1+w?) 1

@ = 0= L0 (o g1 4w - 2u)
For n = 1 + € with € € (0, 1], since inf,, w—due < —€?,
n=3 2 4
4e? — 82 u? —due 1 —inf,((1+u)? —4u(} +¢))
* 2 — 2 - _ < —inf — u 2
[ (x)|* =€ — S-in 1 1
Similarly, for n = 1 — e with € € (0, 1], since inf, “zj# < —¢? (choosing u = —2¢),
4 2 _ 2 2 4
(@) = & = ,%86 < ,inf‘%

- LA A ) 0) Lo (o b (1) = 1§ (La(e,0)- Lo (e B (2)

Hence, for s =2 and ¢ = % we have

R(h) — R* < [La(h) — L£3]*

4.3. We then consider the Hinge loss ®(u) = max(0, 1 +u)?2. Since this function is
the same as that in 4.2 on [—1, o0], the same bounds hold.

4.4. Define the loss of h: X — R at a point (z,y) € X x {~1,1} to be 1 4(z)<o-

a) The Bayes classifier in this case is
W (x) := argmin, ¢ _q 1, Plyla]

hence a scoring function could be

b (@) = {n(x) m3 o #

N D=

where n(x) = P[1]z].

b) In this case, replacing 1j,(z)<o With 1j(2)<0 + 1p(z)=0 yields
R(h) = Eznpn [0(@)(1 = Lh(z)>0) + (1 = 0(2)) (Ln(z)>0 + La(z)=0)]]

R(h) = R* = E(y y)ep[lyn@)<o — Lyn*(a)<0]
= Epnpa [1(2) 1 )<0 + (1 = 10(2))1n@)>0 — (1(2) 1px2)<o + (1 = () 14+ (2)>0)]
where replacing 1p(y)<o With 1p)<0 + 1p@)=0 yields
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. !
= Eonpy 2|07 (2) 1p(2)sh= (@)<0 + (—h" (2) + 5)(1;1@):0 — Lh+(2)=0)]

CHAPTER 15 NOTES

Definition: A projection on a vector space V is a linear operator P : V — V
such that P2 = P. A projection on a Hilbert space V is an orthogonal projection
if (Pz,y) = (z, Py)

Definition: The “Frobenius norm”, denoted by ||.||r is a matrix norm defined
over R™*" ag

m n

> M

i=1 j=1

[IM]|F =

Definition: For a sample S = (x1,...,2,,) and feature mapping ® : X — RV,
we define the data matrix (®(z1),..., ®(z,,)) = X € RV*™_ If X is a mean-
centered data matrix (Y-, ®(x;) = 0), let Pj, denote the set of N-dimensional
rank—k orthogonal projection matrices. PCA (Principal Component Analysis) is
defined by the orthogonal projection matrix

P* := argminp.p, ||[PX — X||%
Definition: The “top singular vector” of a matrix M is the vector x which maxi-
mizes the Rayleigh quotient

xTMx
T

r(x,M) =

X X

Theorem 15.1: Let P* € P, be the PCA solution for a centered data matrix
X. Then, P* = U, U7}, where Uy € RN*k is the matrix formed by the top k

singular vectors of C := %XXT, the sample covariance matrix corresponding to
X. Note that this is the sample covariance matrix since

1

1 & 1
m(XXT)ij = m ZXMXZ‘ = m Z(I)(xﬁ)iq)(wf)j
=1 =1

= E[®(2)i®(x);] = E[®(2);®(2);] — B[®(2)i] E[®(2);] = Cov(®(2)i, ®(x);)

where the right hand term is the covariance between i-th and j-th coordinates of
the feature output based on m samples. Moreover, the associated k-dimensional
representation of X is given by Y = UL X.

Proof: For P = P an orthogonal projection matrix, we seek to minimize

N N
IPX - X% = 3" S ((PX — X);5)? = Te[(PX — X)T(PX — X)]
i=1 j=1
= Tr[X"P?X - XTPTX - XTPX + XTX] = Tr[XTPX - 2X"PX + XX]
= Tr[X?] - Tr[XTPX]
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hence we seek to maximize

Tr[XTPX] = Tr[XTU,UF X] = Tr[UF XXTUy]

kN kK N N
=X (Z (UL XXT);(Uy); ) > (Z (Z(Ug)ié(XXT)Zj)(Uk)ji)
=1 =1 =1 =1 =1

so for u; := ((Ug)1s, ..., (Ug) i),

N
=3 (ulxX"w;)

=1
where
PX = U, U/X

so that Y := U;{X is a k-dimensional representation of X.

Note: The top singular vectors of C are the directions of maximal variance in
the data, and the u; are the variances, so that PCA may be understood as projec-
tion onto the subspace of maximal variance.

b) In the 1-dimensional case, PCA seeks to minimize ||PX — X||%, which by part
a) gives the direction in which projection yields maximal variance.

Remark: In Kernel principle component analysis (KPCA), the feature map ®
send X to an arbitrary Reproducing Kernel Hilbert Space (RKHS) equipped with
its own inner product (kernel function K).

Definition: Isomap extracts the low-dimensional data that best preserves pair-
wise distances between inputs based on their geodesic distances along a manifold.
The algorithm is specified as follows:

1. Using the Lo norm, find the ¢ closest neighbors for each data point and construct
an undirected neighborhod graph G, in which points are nodes and links are edges.

2. Compute approximate geodesic distances A;; between all pairs of nodes (i, j) by
computing all-pairs shortest distances in G.

3. Calculate the m xm similarity matrix as Kigo := — % (L,— % 117)Ad,, - % 117),

where 1 is a column vector of all ones and A is the squared distance matrix.

4. Find the optimal k-dimensional representation Y = {y;}?_; where

Y = argminy: Y (1lvi - v}l3 - &%)
,J
given by
1
Y = (EISO, j) 2 U%;o,k
Note that Xy, j is the diagonal matrix of the top % singular values of Ki,, and
Urso, k are the corresponding singular vectors. Further, Kig, serves as a kernel ma-
trix (similarity matrix for data points in feature space) if it is positive semidefinite.
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Definition The Laplacian Eigenmaps algorithm aims to find a k-dimensional rep-
resentation of the data matrix X which best preserves the weighted neighborhood
relations specified by a matrix W:

1. Find the ¢ nearest neighbors of each point

;=113

. n =€ o if x; an i are nei T r
2. Define W € R™*™ as W, 2 f x; and x; are neighbors, or as 0
otherwise, where o is a scaling parameter.

3. Construct a diagonal matrix D € R™*™ as D;; = Z;nzl W,;.
4. Find Y € R¥*™ gatisfying
argminy { > Wil - v}l }
,J

Intuitively, the above minimization penalizes k-dimensional representations of neigh-
bors that differ largely under the Lo norm.

Proposition (LE definition): The solution to the Laplacian eigenmap mini-
mization is Uf’k, where L = D — W is the “graph Laplacian” and ng are the
bottom k singular vectors of L (excluding 0 if the underlying neighborhdod graph
has connections).

Proof: We find that, for x € RY and Y € R¥*™ we have

(YLYT),; Z Y}, Z Yo ( Z Lethg)

=3 Yu> Wu(Yy —Yy)

=1 t£0
while

ZWMHyZ yZHQ —ZZWM (yz yz)

i=1 ¢=1

D Wally))® =2y yi) + (v0)*)
=1

I
WE

K2

Il
-
o~

m

=3 W D03 - 20050 + 03

i= =1

H

~
Il

—
<

_ iiww(iY —2Y!, Y, + Y;.f)

hence by (*)
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so for Y := Y'T by the final simplication used in Theorem 15.1,

k
=> yiLy,
=1

Remark (PCA Gradient Descent): From Theorem 15.1, we have that

6 2
mHPX—XIIF: ;;; UD)ie(XXT) 0 (Uk) 32
N N
- (2(Uk)ab(XXT)aa + Z(Ug)bE(XXT)Ka + Z(XXT)aj(Uk)jb>
47’5“]\] j#a
= =2 (Up) (XX )as
=1

since . .
XXE =3 X XL =Y X;. X5 = XXJ,

so for F(Uy) = ||UxUF' X — X||% and DF(Uy)j; = B(Uk -[|[PX — X||3%, we perform
gradient descent steps as

U — ADF(Uy,)
for step size A.

Ch. 15 Exercises.

15.1. Let X be an uncentered data matrix and let X := % Zil x; be the sample
mean of the columns of X.

a) We require

- ;; P(z0)i®(20); — XiX; = % ;(Xf)z(xe)y — XX
- l(z:(xf)l(xl)a — (x0)i(X;) — (x0) (%) + (xz)(xj)>
=1
hence
€= %Z@WT —xX —X'x +X'%) = %Z(xi - %)(x; — %)7
=1 =1

Then, for a vector u € RV, we have

Var(u”x;) = E[(u”x;)?] — E[u”x;]?

(iu X;) ) ( (u'x;)? — (u E)Q)

i=1

1 _ _ 7
— E u? (xix? — %X —X'x; + X X)u = uCu”
m

=1
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15.2. In this problem we prove the correctness of double centering (computing
Kis) using Euclidean distance. Define X as in 15.1, and define X* to have
X' = x; — X as its i-th column. Let K := XXT and let D denote the Euclidean

K2
distance matrix with D;; = ||x; — x;||. Further, let A denote the squared distance

matrix with A;; = D?j.

a) We find that

m

1 m
Kij = Z XXy = 5 < Z X7 — X7 + ng - X%j + QXh‘Xe])
= —1

1/ 1
= §<ZX?1' + X35~ (X — Xéi)2> = 5 (Kii + Ky — [[xi - x5|1%)
=1

1
= i(Kz’i + Kjj; — D?j)

b) Let K* := X*TX*. We first find that

1 1 1
K117 = = > K= — > > XeXp = Y (R)elxi)e
m m t=1 m t=1 (=1 (=1
—(A1TK)i; = — > K= - DY XXy =Y (R)elx;)e
t=1 t=1 4=1 =1
and
W(HTKHT)M =3 > 1) (k1" = ooy 3D ®elxe)e = (%)
t=1 t=1 ¢=1 /=1
Then,
N N
Kj = X5 X5 = (xi —X)u(x; — %)
=1 =1
N
=Y (i)e(x5)e = (x0)e(R)e — (x)e(R)e + (%)
(=1
1
=K — E(KllT)” E(nTK)” + —117K117)
so that 1
K=K - —K117 17K + —117K11”

¢) We find that
. 1 1 1
K, =K — E(KllT)ij - E(llTK)ij + W(11TK11T)ij
T
(117K11"),;

2 ZZK”

t=1 ¢=1

1 1 1
= 5 (Kii + Kj; = D) — *(KllT)z‘j - —(17K);; +

5\~3M\H

Z%(Kz‘i—Fij _7ZKzt_7ZKt7+
t=1
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1
= *(Kz'ri‘ij_D?j)—

2 %t: m

m

1
1 2 1 ¢ 2 2 1 2
= 5(—Dij) o Z ((Ktt —-Dj;) - Dj; - o Z(KM —Dj,)
t=1

N——

m
=1
1 1 m m m
25(—D3j_EZ(Ktt_D22t QZZKM_ té)
t=1 t=1 ¢=1
1 1 m m m
- _(p2 - — D2 D D? )

d) We then find that
(AL, — f11T)) = Ay — — ZA&

hence we may solve for (HAH);; as

1 1 1 & 1 & 1 &
(I — %HT)A(Im - EHT))Z-]- =i — — > oAy - — > (A - ~ > A
t=1 =1 t=1

1
= —2K}; = K* = — HAH

15.3. Assume k£ = 1 and we seek a one-dimensional representation y. By Propo-
sition (LE Definition), the Laplacian eigenmap optimization problem is equivalent
to y = argming, y'" Ly’

Remark: We now seek to understand such algorithms in the context of the Fenchel
game no-regret dynamics framework (FGNRD) introduced by Wang-Abernethy-
Levy.

Definition (Conjugate function): For a function f : D — RUoo where D C RY,
we define its conjugate f* : R? — R U oo as

[ (y) == sup{(y,z) — f(z)}
xeD

Proposition (Conjugate convex): Conjugate functions of convex functions are
convex.

Proof: For f: D — R convex where D C R%, we find that
[Tz 4+ (1= XNy) = Su%{@’, Az + (1= Ny) — f(z')}
S

= sup {<$/, Az + (1= N)y) — f(‘r/)}
z’eD

= sup {(x'7/\x> + <$/ay> - A(m’,y} - f(l'/)}

z'eD

= sup {\z,2') = Af(2') + (y,2") = f(2') = My, 2") + Af(2)}

x'eD

m m
1

> (it Ki—D2)+(Ku+ Ky -D3)—— > (Ku+Ku~D) )
=1
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= sup {A((z,2") — f(2)) + (1 = M)y, 2) — f(2'))}

z’'e€D
< A;té%{<x,x’> —fE@)+ (1 =N ;}3{@,%’9 — f(=")}

= A" (@) + (1 =) (y)

Definition (subdifferential): The subdifferential 0f(z) is the set of all sub-
gradients of f at z, i.e.

Of(@) ={fa: f(2) 2 (fa, 2z — ) + f(), Vz}

Proposition (Equivalence) : For a closed convex function f : R? — R, the
following are equivalent:
Lyedf(x)
II. z € 0f*(y)
L (z,y) = f(z) + [*(y)

Proof: We first note that f*(x) is convex as the supremum over
First suppose y € 0f(z), i.e. f(z)— f(z) > (y,z — x) for all z € RY. NOT YET
DONE!!

Definition (Payoff function) We define our two-input “payoff” function g :
R? x R - R as

9(x,y) = (z,y) — " (y)
We will understand this function as a zero-sum game in which, if player 1 selects
action x and player 2 selects action y, g(z,y) is the “cost” for player 1 and the
“gain” for player 2.

Definition (Min-max problems, Nash equilibrium): Given a zero-sum game
with a payoff function g(z,y) which is convex in = and concave in y, we define

V*:= inf s ,
nf Zggg(z Y)

We further define an “e-equilibrium” of ¢(.,.) as a pair Z,y for which

V*—e< inf g(z,y) <V* <supg(z,y) <V*+e¢
reEX yeY
where X and ) are convex decision spaces of the z-player and y-player respectively.

Definition (Fenchel Game): To solve for inf,cp f(z), we define g: X x Y — R
as

g(gj,y) = <x,y> - f*(y) = <£L',y> — sup {<l’/,y> - f(fE,)}

z'€D
and attempt to find an e-equilibrium for g(z,y).

Proposition: An equilibrium for the Fenchel game function solves the minimiza-
tion problem inf,cp f(x).
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Proof: For an e-equilibrium Z, 4 of ¢ defined as above, we have
inf f(z) = — sup{—F(2)} = — sup {{&,) — (&',9) — F(&)} = h(y)
zeD zeD z'€D
so that
inf {(z,5) — sup {(z',7) — f(@")}} < h(G) < sup {(@.y) - sup {(',y) — F(a)}}
TeX z'€D yey z'€D
hence
(x) V" —h(y)] < 2€
where
V* = inf sup 3 (z,y) — sup {(z’,y) — f(z’
int sup {(2y) = sup {(a's9) = S )}
and as € — 0 we have
Ve =sup{(@y) - sup {(z',y) - f()}}
yeY xz’'eD
= sup{(2,y) — f*(y)} = f(@)
yey
which follows from Proposition (Equivalence)

Corollary (mine): If (Z,9) is an e-equilibrium of the Fenchel Game as defined
above, then

(@) —inf f(2)] < ¢

Proof: Follows from (x) above for ¢ := §.

Definition (Online Convex Optimization): Online convex optimization works
as follows. At each round ¢ (of 7" many), the learner selects a point z; € Z and
suffers a loss a;f;(z¢) for this selection, where v is the weight vector and Z C R4

is a convex decision set of actions.

In general it is assumed that, upon selecting z; during round ¢, the learner has
observed all loss functions a1£1(.), ..., a;—14;—1(.) up to but not including time ¢.
An exception to this are the “prescient” learners (whose algorithms, marked with a
“4+” superscript, have access to the loss ¢; prior to selecting z;) maintain knowledge
of the t-th loss function.

Algorithm 1 Protocol for weighted online convex optimization

Require: convex decision set Z C R?
Require: number of rounds T
Require: weights oy, a9, ...,ar >0
Require: algorithm OAlg
fort=1,2,...,T do
Return: z; < OAlg
Receive: ay, {(-) — OAlg
Evaluate: Loss < Loss + a:li(z)
end for
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Remark: The “OAlg” referenced above refers to an algorithm performed within
the current algorithm, and “OAlgX” will refer to the algorithm updating the z
coordinate in the Fenchel Game No Regret Dynamics.

Definition (regret): We define a learner’s “regret” as

T T
a-REG*(z") := Z aply(ze) — Z ol (")
t=1 t=1

where z* € Z is the “comparator” to which the online learner is compared. We
further define “average regret” as that normalized by the time weight A : Zthl e
and denote it by
a-REG?(z*)

Ar
Finally, “no-regret algorithms” guarantee a-REG” (z*) > 0as Ap — o0

a-REG(z*) :=

Definition (online learning strategies): The following batch-style online-learning
strategies modify the central algorithm Follow The Leader (FTL):

Algorithm 2 Online Learning Strategies

Require: convex set Z, initial point zj,; € Z
Require: ay,...,ar >0, l,....0r: Z >R
FTL[zinit]: 2t ¢ zinit if t = 1, else
2zt ¢ argmin, . z ( Zi;ll ol (Z))
FTL* 2z, < argmin, ( Zi:l asés(z))

FTRL[R(.),n]: 2z + argminzeZ<Zi:1 asls(z) + %R(z))

Vishnoi Problems (work in progress):

1. Let f9, f1,...: K — R be a sequence of convex and differentiable functions, and

20,21, ... € K a sequence of points where 2" := argmin, R(z) and R: K — R is a

convex regularizer. In this case, we define regret up to time 7T as

T-1 T-1
Regret, := Z fi(z") — min Z (=)
=0 v
and z! is defined as follows (as in FTRL)

t—1
z' = argmin, (Z fi(z) + R(:c))
i=0

We further assume that the gradient of each f? is bounded everywhere by G and
the diameter of K is bounded by D.

(a) We wish to show

Regrety < 3 (f'(a) = f'(a"*1)) — R(2°) + R(z")
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for all T' € Ny where

T—1
¥ 1= argmin, ¢ i Z fi(x)
t=0
Proof: We first use induction to show that
T—1
(%) Z flath) <y i)
t=0

As a base case, for T =1 we ﬁnd
foat) < fOa”)
as equality holds. We then assume the T'— 1 case (*) and observe

T
Zf t+1 <fT T+1 +th Sth(JUTH)
t=0

t=0
Then, since we have

S

ST+ RET) < S ST + RET)

t

I
=3

To show

b

izt manf z*) — R(2?)

~
Il
=}

we first prove

As a base case, observe that

fOa*) + R(a*) > fO(a') + R(z') > fO(«") + R(°)
Then, as an inductive hypothesis suppose
T—1

Zf )+ R(xy) = Y fi@'™h) + R(a°)

t—0

where z%. = argmin, Zt::) f(z). In this case, we have that

T T

Y fi ) + R 2 Y ST + R
t=0 t=0
T—1

> fT@™ )+ ) fi(eh) + R(2”)

t=

[}

(b) Given an € > 0, we now use this method for

1
R(z) := 5|\f€|l§

such that )
TRegretT <e
Proof: We wish to find T and 7 for which
Regrety < [f2(2%) — f77(a7)] + R(z*) — R(z°) < eT

35
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> 7 (1076 = G+ eI = e°11) < ¢

Hence, we choose n = % and T = QGTD so that

1 . 1, .,
(0@ = 77+ (U~ 11a°1B)

G
Glla® =T |ls + Flla* —a"I13)
€

2GD

< S (
2GD
< (GD+GD):e

Lemma (Legendre): For convex and differentiable f, we have

y" = argmax, ((z,y) — f(y)) <= z=V[(y")

Definition (First-order oracle): A first-order oracle for a function f : R™ — R is
a primitive that, given z € Q™, outputs the value f(x) € Q and a vector h(z) € Q™
such that, for any z € R",

f(z) = f(z) + (h(z),z — 2)
so h(xz) = Vf(x) for f differentiable, else it is a subgradient of f at x.

Definition (BESTRESP™[¢]): This strategy, for prescient learners, is simply given
by

argmin, . 2 {£())

Definition (FW): The Frank-Wolfe method accesses a linear optimization ora-
cle and remains within the domain D:

Algorithm 3 Frank-Wolfe Method and its FGNRD equivalent

Require: L-smooth (Lipschitz constant L) function f(-)
Require: convex domain D C R?
Require: arbitrary wyg, iterations T

FW (iterative)

Ve t_%l

vy +— argmin, e p (v, V f(we—1))

wy <= wi—1 + Ve (Ve — wi—1)

FGNRD Equivalent

9(z,y) = (z,y) — f*(y)

Qp t

OAlgY := FTL[V f(w)]

OAlg™ := BESTRESP[g]

Note that the FTL loss function at time ¢ is —g(z¢, ) in this case, while the loss
function for BESTRESP™ is g(-, y;).



NOTES AND SOLUTIONS TO MOHRI'S FOUNDATIONS OF MACHINE LEARNING 37

Proof of equivalence: To show the equivalence of the above FGNRD and Frank-
Wolfe algorithms, we prove that the following three equalities hold at every time
step t:

L Vf(wi—1) =y,

1L Ve = T,
II1. Wy = Ty
t
where T; := M is the weighted-average point produced by the dynamic.

s=1 "5

We proceed by induction. As a base case, for ¢ = 1 we have V f(wg) = yo. Then,
we show I = II = III = I (for ¢t + 1). For I = II we have

Vi(wi—1) =y = x¢ = argminzGD(<xa ye) — [ (ye)

= argmianD(<x7 vf(wt—l)) = Ut
For II = III, we note that

Ty =Ty1 +ve(2s — Tpo1) = 7 = 7

Zs:l Qs Zs:l Qs
a Yousy aulm — ) oy t ot 2

— ’y = — = = = =
t (Zi:l as)(Zi:i o (@ — 25)) ZZ:l Qs ZZ:l s tt+1) t+l
so that Z; = w; for wg = Ty. Finally, for III = 1,

Sl 0uts | Yy osts | (zi:i 0 (0 xs>>

t—1 t—1
Yy = argmin,, Z as(—g(zs,y)) = argmin, ( — % Z sg(xs, y))

s=1 Zs:l S =1
' = )

= argunin, | - > s(f* () — (za,w))

s=1° s=1
L o,
= argmin,, (f*(y) — <£:;_118,y>> = argmax, (T;—1,y) — f*(y) = Vf(Tt-1)

s=1

=V f(wi-1)
from III, so we are done. Note that the penultimate equality is due to Lemma
(Legendre).
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