
NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF

MACHINE LEARNING

LUCAS TUCKER

Abstract. The following are a series of notes and solutions to Chapters 2, 3,
4, and 15 from Foundations of Machine Learning by Mehryar Mohri.

Contents

Chapter 2 Notes 2
Ch. 2 Exercises 3
2.2 4
2.3 4
2.4 4
2.6 5
2.7 5
Chapter 3 Notes 5
Ch. 3 Exercises 17
3.1 17
3.2 17
3.3 17
3.11 19
3.27 20
3.31 21
Chapter 4 Notes 22
Ch. 4 Exercises 24
4.1 25
4.2 25
4.3 25
4.4 25
Chapter 15 Notes 26
Ch. 15 Exercises 29
15.1 29
15.2 30
15.3 31
Vishnoi Problems (work in progress): 34
1 34

Date: September 15, 2023.

1

2 LUCAS TUCKER

Chapter 2 Notes

To show E[R̂S(h)] = R(h), or that the expectation of empirical error over m
samples drawn from a distribution D is equal to generalization error, we have

ES∼Dm [R̂S(h)] =
1

m

m∑
i=1

ES∼Dm [χc(xi)̸=h(xi)]

= ES∼Dm, x∈S [χc(x) ̸=h(x)] = Ex∼D[χc(x) ̸=h(x)] = R(h)

Definition (PAC-learning): A concept class C is “PAC-learnable” if there exists
an algorithm A and a polynomial function poly(., ., ., .) such that for any ϵ > 0
and δ > 0, for all distributions D on X and for any target concept c ∈ C,

PS∼Dm [R(hS) ≤ ϵ] ≥ 1− δ

where hS denotes the hypothesis returned by A after receiving the labeled sample
S. If A further runs in poly(1/ϵ, 1/δ, n, size(c)) then C is said to be “efficiently
PAC-learnable” and A is deemed a “PAC learning algorithm for C”.

Theorem (Learning Bound – finite, H consistent): Let H be a finite set
of functions from X to Y. Let A be an algorithm that for any target concept c ∈ H
and iid sample S returns a consistent hypothesis hS such that R̂S(hS) = 0. Then
for any ϵ, δ > 0,

m ≥ 1

ϵ
(log |H|+ log

1

δ
)

⇒ PS∼Dm [R(hS) ≤ ϵ] ≥ 1− δ

Proof: Fix ϵ > 0 and consider Hϵ := {h ∈ H : R(h) > ϵ}. Then, P[R̂S(h) = 0] ≤
(1− ϵ)m for S ∼ D of size m. Hence,

P[∃h ∈ Hϵ : R̂S(h) = 0]

= P[R̂S(h1) = 0 ∨ R̂S(h2) = 0 ∨ ... ∨ R̂S(|H|) = 0]

≤
∑
h∈Hϵ

P[R̂S(h) = 0] ≤ |H|(1− ϵ)m ≤ |H|e−mϵ

⇒ PS∼Dm [R(hS) ≤ ϵ] = P[hS /∈ Hϵ|R̂S(hS) = 0] = 1−P[hS ∈ Hϵ|R̂S(hS) = 0] ≥ 1−δ

Corollary 2.10: Fix ϵ > 0. Then, for any hypothesis h : X → {0, 1}, we have

PS∼Dm [R̂S(h)−R(h) ≥ ϵ] ≤ e−2mϵ2

and

PS∼Dm [R̂S(h)−R(h) ≤ −ϵ] ≤ e−2mϵ2

hence

PS∼Dm [|R̂S(h)−R(h)| ≥ ϵ] ≤ 2e−2mϵ2

Proof: Use Hoeffding’s Lemma (E[etX] ≤ e
t2(b−a)2

8) and the Chernoff Bounding
technique (P[X ≥ ϵ] = P[etX ≥ etϵ] ≤ e−tϵE[etX]) for Hoeffding’s Inequality

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 3

(P[X − E[X] ≥ ϵ] ≤ e
−2ϵ2∑m

i=1
(ai−bi)

2
for X =

∑m
i=1 Xi with Xi ∈ (ai, bi)). Note

that here R̂S(h) =
1
m

∑m
i=1 χh(x)̸=c(x) so that the value

∑m
i=1(ai − bi)

2 in this case

is equal to
∑m

i=1(
1−0
m)2 = m · 1

m2 = 1
m .

Corollary 2.11 (Generalization Bound): Set 2ϵ−2mϵ2 = δ in the previous
part.

Theorem 2.13 (Learning bound – finite, H inconsistent case): Let H be a
finite hypothesis set. Then, for any δ > 0 and any h ∈ H, we have

P

[
R(h) ≤ R̂S(h) +

√
log |H|+ log 2

δ

2m

]
≥ 1− δ

.

Proof: We find that

P[∃h ∈ H : R(h)− R̂S(h) > ϵ]

= P[(R(h1)− R̂S(h1) > ϵ) ∨ ... ∨ (R(h|H|)− R̂S(h|H|) > ϵ)]

≤
|H|∑
i=1

P[R(hi)− R̂S(hi) > ϵ] ≤ 2|H|e−2mϵ2

so then

δ := 2|H|e−2mϵ2 ⇒ −2mϵ2 = log
δ

2|H|
⇒ ϵ =

√
− log δ

2|H|

2m
=

√
log |H|+ log 2

δ

2m

Definition (Agnostic PAC-learning): Let H be a hypothesis set. Then, A is an
agnostic PAC-learning algorithm if there exists a polynomial function poly(., ., ., .)
such that for any ϵ, δ > 0 and any distribution D over X × Y,

m ≥ poly(
1

ϵ
,
1

δ
, n, size(c))⇒ PS∼Dm [R(hS)−min

h∈H
R(h) ≤ ϵ] ≥ 1− δ

Note further that if A is poly(1ϵ ,
1
δ , n, size(c)), it is said to be an “efficient agnostic

PAC-learning algorithm”.

Definition: A scenario is “deterministic” if the label of a point can be uniquely
determined by some measurable function f : X → Y with probability 1.

Definition (Bayes Error) Given a distribution D over X × Y, the Bayes Er-
ror

R∗ := inf
h:X→Y

h measurable

R(h)

satisfies R∗ = 0 in the deterministic case, and R∗ ̸= 0 in the stochastic case. A
hypothesis h with R(h) = R∗ is called a “Bayes classifier”.

Ch. 2 Exercises.

4 LUCAS TUCKER

2.2. An axis-aligned hyper-rectangle in Rn is a set of the form [a1, b1]×...×[an, bn].
Suppose the set of all instances belong in X = Rn and C is the set of all axis-aligned
hyper-rectangles in Rn.

Let R ∈ C be a target concept and fix ϵ > 0 so that P[R] > ϵ (or else the algorithm
presented below works immediately). Let a1, ..., an and b1, ..., bn be 2n real values
defining R = [a1, b1]× ...× [an, bn]. We then define rectangles on the perimeter as
Ri,0 := [a1, b1]×...×[ri, bi]×...×[an, bn] and Ri,1 := [a1, b1]×...×[ai, ri]×...×[an, bn]
such that ri = inf{r ∈ R : P[[a1, b1]× ...× [ai, r]× ...× [an, bn]] ≥ ϵ

2n}.

We define our algorithm A as returning the tightest axis-aligned hyper-rectangle
RS containing the points labeled with 1. If R(RS) > ϵ, RS must miss at least one
rectangle Ri so that

PS∼Dm [R(RS) > ϵ] ≤ PS∼Dm [

n⋃
i=1

1⋃
j=0

{RS∩Ri,j = ∅}] ≤
n∑

i=1

1∑
j=0

PS∼Dm [{RS∩Ri,j = ∅}]

≤
n∑

i=1

2(1− ϵ

2n
)m = 2n(1− ϵ

2n
)m = 2nem log(1− ϵ

2n) ≤ 2ne−
mϵ
2n

Hence,

δ ≥ 2ne−
mϵ
2n ⇐⇒ m ≥ 2n

ϵ
log

2n

δ

so that C is PAC-learnable.

2.3. Let X = R2 and consider the class C of concepts of the form c = {(x, y) :
x2 + y2 ≤ r2} for some r ∈ R. We fix C ∈ C as a target concept, along with an
ϵ > 0, and we define our algorithm A as that which returns the infimum of circles
containing the points labeled with 1. We denote this infimum as CS .

We then define the circle C0 as C0 = argmaxc∈C{P[c\Cs] : P[c\Cs] ≤ ϵ}. Therefore,
if R(CS) > ϵ, then CS ∩ C0 = ∅, so that

PS∼Dm [R(CS) > ϵ] ≤ PS∼Dm [CS ∩ C0 = ∅] = (1− ϵ)m ≤ e−mϵ

Hence,

δ ≥ e−mϵ ⇐⇒ log
1

δ
≤ mϵ ⇐⇒ m ≥ (

1

ϵ
) log

1

δ

as desired.

2.4. Let X = R2 and consider the set of concepts of the form c = {x ∈ R2 :
||x − x0|| ≤ r} for some x0 ∈ R2 and r ∈ R. Suppose the target concept c0 ∈ C
has P[c0] = k > 0 and radius r0 for some k, r0 ∈ R. If p ∈ r1 ∩ r2 and ℓ ∈ R2 is a
line which passes through the intersection r1 ∩ r2, we consider a translation of the
circle along ℓ from p toward the center of the circle. In particular, a translation
c′ := c0+

r0
2 intersects each of the three regions ri yet maintains an error of at least

k
2 so that Gertrude’s method does not work.

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 5

2.6. Consider now the case where the training points recieved by the learner are
subject to the following noise: points labeled positively are randomly flipped to
negative with probability less than η′ < 1/2. We again consider the algorithm A
which returns the tightest rectangle containing positive points.

a) For a target concept R we can again assume P[R] > ϵ. Now suppose that
R(R′) > ϵ. Then, the probability that R′ (due to A) misses a region rj for j ∈ [4]

is at most (1− ϵ
4)

mη′
for a sample S of size m.

b) Hence, P[R(R′) > ϵ] ≤ 4(1 − ϵ
4)

mη′
= 4emη′ log(1− ϵ

4) ≤ 4e−
mη′ϵ

4 so that δ ≥
4e−

mη′ϵ
4 yields a sample complexity bound of m ≥ 4 log 4

δ

ϵη′ .

2.7. Consider a finite hypothesis set H, assume that the target concept is in H and
that the label of a training point received by the learner is randomly changed with
probability η ∈ (0, 1

2) where η ≤ η′ < 1
2 .

a) For any h ∈ H, let d(h) denote the probability that the label of a training
point received by the learner disagrees with the one given by h. Let h∗ be the tar-
get hypothesis. Since the learner will error with probability η (assuming R(h) = 0),
we have d(h∗) = η.

Chapter 3 Notes

Definition: We define G := {g : (x, y)→ L(h(x), y) | h ∈ H} as a family of loss
functions L : X × Y → R and let Z := X × Y. Note that many results below hold
for arbitrary loss functions L : Y × Y → R.

Definition (Empirical Rademacher Complexity): Let G be a family of func-
tions mapping from Z to [a, b] and S := (z1, ..., zm) a fixed sample in Z. Then, the
Rademacher complexity of G with respect to sample S is given by

R̂S(G) = Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(zi)
]
= Eσ

[
sup
g∈G

σ · gS
m

]
where σ := (σ1, ..., σm)T with independent uniform random variables (Rademacher
variables) σi ∈ {−1, 1}, and gS := (g(z1), ..., g(zm))T .

Definition (Rademacher Complexity): Let D denote the distribution accord-
ing to which samples are drawn. For m ∈ N with m ≥ 1, we define

Rm(G) := ES∼Dm [R̂S(G)]

Intuitively, Rademacher Complexity measures how robust a class of loss functions

is, as a higher R̂S(G) for a set S indicates a space of functions more adaptable to
arbitrary labelings.

Definition (Martingale Difference Sequence): A sequence of random vari-
ables V1, V2, ... is a martingale difference sequence with respect to X1, X2, ... if for
any i > 0, Vi is a function of X1, ...Xi and E[Vi+1|X1, ..., Xi] = 0.

6 LUCAS TUCKER

Lemma D.6 Let V,Z be random variables such that E[V |Z] = 0 and for some func-

tion f and constant c ≥ 0, f(Z) ≤ V ≤ f(Z) + c. Then t > 0⇒ E[etV |Z] ≤ e
t2c2

8

Proof: Repeat the proof of Hoeffding’s Lemma but with conditional expectations.

Theorem D.7 (Azuma’s Inequality): Let V1, V2, ... be a martingale differ-
ence sequence with respect to random variables X1, X2, ... and assume that for
any i > 0 there exists ci ≥ 0 and a random variable Zi(X1, ..., Xi−1) such that
Zi ≤ Vi ≤ Zi + ci. Then for any ϵ > 0 and m ∈ N,

P[
m∑
i=1

Vi ≥ ϵ] ≤ e
−2ϵ2∑m
i=1

c2
i

and

P[
m∑
i=1

Vi ≤ −ϵ] ≤ e
−2ϵ2∑m
i=1

c2
i

Proof: Using Lemma D.6, we find that Sm :=
∑m

i=1 Vi we have that P[Sm ≥ ϵ] =

P[etSm ≥ etϵ] ≤ e−tϵE[etSm] = e−tϵE[etSm−1]E[etVm |X1, ..., Xm−1] ≤ e−tϵE[etSm−1]e
t2c2m

8 ≤
e−tϵe

t2
∑m

i=1 c2i
8 . We then choose t = 4ϵ∑m

i=1 c2i
and repeat for the other inequality.

Theorem D.8 (McDiarmid’s Inequality) Let X1, ..., Xm ∈ Xm be a set of
m ≥ 1 independent random variables and suppose there exists c1, ..., cm > 0 such
that f : Xm → R satisfies

|f(x1, ..., xi, ..., xm)− f(x1, ..., x
′
i, ..., xm)| ≤ ci

for any i ∈ [m] and x1, ..., xm, x′
i ∈ Xm. Then for f(S) := f(X1, ..., Xm) and any

ϵ > 0 we have

P[f(S)− E[f(S)] ≥ ϵ] ≤ e
−2ϵ2∑m
i=1

c2
i

and

P[f(S)− E[f(S)] ≤ −ϵ] ≤ e
−2ϵ2∑m
i=1

c2
i

Proof: We define variables V = f(S) − E[f(S)] and Vk = E[V |X1, ..., Xk] −
E[V |X1, ..., Xk−1]. Then, E[Vk|X1, ..., Xk−1] = E[E[V |X1, ..., Xk]−E[V |X1, ..., Xk−1]|X1, ..., Xk−1] =
0 so that the Vk are a martingale difference sequence. Then, we define

Lk := inf
x

E[V |X1, ..., Xk−1, x]− E[V |X1, ..., Xk−1]

and

Uk := sup
x

E[V |X1, ..., Xk−1, x]− E[V |X1, ..., Xk−1]

so that Uk −Lk ≤ supx,x′ E[V |X1, ..., Xk−1, x]−E[V |X1, ..., Xk−1, x
′] ≤ ck so that

Lk ≤ Vk ≤ Lk + ck and we may apply Azuma’s Inequality.

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 7

Theorem 3.3 For G a family of functions mapping Z to [0, 1], for any δ > 0
and g ∈ G we have

P

[
E[g(z)] ≤ 1

m

m∑
i=1

g(zi) + 2Rm(G) +

√
log 1

δ

2m

]
≥ 1− δ

P

[
E[g(z)] ≤ 1

m

m∑
i=1

g(zi) + 2R̂S(G) + 3

√
log 2

δ

2m

]
≥ 1− δ

Proof: For any sample S = (z1, ..., zm) and g ∈ G, denote ÊS [g] :=
1
m

∑m
i=1 g(zi).

We then define
Φ(S) := sup

g∈G
(E[g]− ÊS [g])

Let S, S′ be two different samples (differing by zm in S and z′m in S′) so

Φ(S′)− Φ(S) ≤ sup
g∈G

(E[g]− E[g]− ÊS [g] + ÊS [g]) ≤ sup
g∈G

g(zm)− g(z′m)

m
≤ 1

m

Repeating the argument for ϕ(S′) − ϕ(S), we get |Φ(S) − Φ(S′)| ≤ 1
m . Then, by

McDiarmid’s Inequality we have

P[Φ(S)− E[Φ(S)] ≤ ϵ] ≤ e
−2ϵ2∑m
i=1

1
m2 = e−2ϵ2m

. Note further that

δ

2
:= e−2ϵ2m ⇒ ϵ =

√
log 2

δ

2m

. Then,

ES [Φ(S)] = ES [sup
g∈G

(E[g]− ÊS [g])] = ES [sup
g∈G

(ES′ [ÊS′ [g]− ÊS [g]])]

≤ ES,S′ [sup
g∈G

(ÊS′ [g]− ÊS [g])] = ES,S′ [sup
g∈G

(
1

m

m∑
i=1

g(z′i)− g(zi))]

= ES,S′,σ[sup
g∈G

(
1

m

m∑
i=1

σi(g(z
′
i)− g(zi)))]

≤ ES′,σ[sup
g∈G

(
1

m

m∑
i=1

σig(z
′
i))] + ES,σ[sup

g∈G
(
1

m

m∑
i=1

σig(zi))] = 2Rm(G)

We then note that, for sets S and S′ differing by one point,

|R̂S(G)− R̂S′(G)| ≤ 1

m

so again by McDiarmid’s we have

P[Rm(G)− R̂S′(G) ≥ ϵ] ≤ e−2mϵ2

hence

δ

2
= e−2mϵ2 ⇒ Φ(S) ≤ 2R̂S(G) + 3

√
log 2

δ

2m

8 LUCAS TUCKER

Lemma 3.4: Let H be a family of functions taking values in {−1, 1}, and let
G be a family of loss functions ”associated to H for the zero-one loss”, i.e. G =
{(x, y) 7→ χh(x) ̸=y | h ∈ H}. For any sample S = ((x1, y1), ..., (xm, ym)) of elements

in X × {−1, 1}, let SX = (x1, ..., xm). Then, R̂S(G) = 1
2R̂SX (H)

Proof: We have that

R̂S(G) = Eσ[sup
h∈H

(
1

m

m∑
i=1

σiχh(xi)̸=yi
)]

= Eσ[
1

m
sup
h∈H

(

m∑
i=1

σi
1− h(xi)yi

2
)] = Eσ[

1

2m
sup
h∈H

(

m∑
i=1

σi − h(xi)yi)]

=
1

2
Eσ[sup

h∈H
(
1

m

m∑
i=1

σih(xi))] =
1

2
R̂SX (H)

Theorem 3.5: For a family of functions H taking values in {−1, 1} and D a
distribution over X (the input space), then for any δ > 0 and any h ∈ X , over a
sample S of size m drawn according to D, we have

P

[
R(h) ≤ R̂S(h) +Rm(H) +

√
log 1

δ

2m

]
≥ 1− δ

P

[
R(h) ≤ R̂S(h) + R̂S(H) + 3

√
log 2

δ

2m

]
≥ 1− δ

Proof: We consider the functions g : (x, y) → 1h(x) ̸=y so that E[g(z)] = R(h) and

R̂S(h) = 1
m

∑m
i=1 g(zi). Further, R̂s(G) = 1

2R̂SX (H) so that Rm(G) = 1
2Rm(H).

We then combine Theorem 3.3 with Lemma 3.4.

Note:

R̂S(H) = Eσ[sup
h∈H

1

m

m∑
i=1

−σih(xi)] = −Eσ[inf
h∈H

1

m

m∑
i=1

σih(xi)]

which then calculates the negative expectation over sigma of “empirical risk mini-
mization”, which is computationally hard for some H.

Definition: The growth function ΠH : N→ N is defined as

ΠH(m) = max
(x1,...,xm)⊂X

|{h(x1), ..., h(xm)} : h ∈ H|

where each such distinct classification is referred to as a “dichotomy”.

Maximal Inequality: Let X1, ..., Xn be n ≥ 1 real-valued random variables

such that, for any j ∈ [n] and t > 0, E[etXj ≤ e
t2r2

2] for some r > 0. Then,
E[maxj∈[n] Xj] ≤ r

√
2 log n

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 9

Proof: We have that

etE[maxj∈[n] Xj] ≤ E[max
j∈[n]

etXj] ≤
n∑

j=1

E[etXj] ≤ ne
t2r2

2

then for t =
√
2 logn
r ,

E[max
j∈[n]

Xj] ≤
log n+ t2r2

2

t
= r
√
2 log n

Corollary D.11: Let X1, ..., Xn be n ≥ 1 real-valued random variables such that,
for any j ∈ [n], Xj =

∑m
i=1 Yij . Suppose that for fixed j ∈ [n], Yij are indepen-

dent, zero mean random variables taking values in [−ri, ri] for some ri > 0. Then,

E[maxj∈[n] Xj] ≤
√

2 log(n)
∑m

i=1 r
2
i

Proof: We find that

E[etXj] =
∏
i

E[etYij] ≤
∏
i

e
t2(2ri)

2

8

hence

E[etXj] ≤
t
∑

i r
2
i

2

so that we may apply the Maximal Inequality for r =
√∑m

i=1 r
2
i

Theorem 3.7 (Massart’s Lemma): Let A ⊂ Rm be a finite set such that
r := maxx∈A ||x||2. Then,

Eσ[
1

m
sup
x∈A

m∑
i=1

σixi] ≤
r
√
2 log |A|
m

where the σi ∈ {−1, 1} are independent uniform random variables and x1, ..., xm

are components of x.

Proof: Apply Corollary D.11 to Xi =
1
m

∑m
j=1 σix

i
j for i ∈ [|A|], noting that each

σix
i
j ∈ {−|xi

j |, |xi
j |} hence

∑m
i=1 |xi|2 ≤ r2.

Corollary 3.8: Let G be a family of functions taking values in {−1, 1}. Then,

Rm(G) ≤
√

2 logΠG(m)

m

Proof: For a fixed sample S = (z1, ..., zm), we have

R̂S(G) = Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(zi)
]
≤
√
m
√

2 logΠG(m)

m

so the expectation is bounded similarly.

10 LUCAS TUCKER

Corollary 3.9: For a family of functions H valued in {−1, 1}, for any δ > 0
and any h ∈ H,

P

[
R(h) ≤ R̂S(h) +

√
2 logΠH(m)

m
+

√
log 1

δ

2m

]
≥ 1− δ

where we use the Rademacher complexity bound from Corollary 3.8 and Theorem
3.5.

Definition: A set S of m ≥ 1 points is “shattered” by a hypothesis set H if
H realizes all possible dichotomies of S, i.e. ΠH(m) = 2m.

Definition (VC-dimension): The VC-dimension of a hypothesis set H is the
size of the largest set that can be shattered by H, i.e.

VCdim(H) = max{m ∈ N : ΠH(m) = 2m}

Example: Consider the d+ 1 points xi := (0, ..., 1, ..., 0) for i ∈ {0, 1, ..., d} where
the 1 is in the i-th position and x0 is the origin. Further, let w = (y0, y1, ..., yd)
where yi ∈ {−1, 1}. Then, the hyperplane defined as

w · x+
y0
2

= 0

satisfies

sgn(w · xi +
y0
2
) = yi

for i ∈ {1, ..., d} and
sgn(w · x0 +

y0
2
) = y0

hence the VC-dimension of hyperplanes in Rd is at least d+ 1.

Definition: The convex hull conv(X) of X ⊂ RN is defined as

conv(X) =
{ |X |∑

i=1

αixi |
|X |∑
i=1

αi = 1, xi ∈ X , αi ≥ 0
}

Radon’s Theorem: Any set X of d + 2 points in Rd can be partitioned into
two subsets X1 and X2 such that conv(X1) ∩ conv(X2) ̸= ∅

Proof: Let X = {x1, ..., xd+2} ⊂ Rd. We find that the system

d+2∑
i=1

αixi = 0,

d+2∑
i=1

αi = 0

has d+1 independent equations and d+2 unknowns, so that there exists a non-zero

solution β1, ..., βd+2. Since
∑d+2

i=1 βi = 0, the sets

J1 := {i ∈ [d+ 2] | βi ≤ 0}, J2 := {i ∈ [d+ 2] | βi > 0}

are nonempty and they satisfy∑
i∈J1

βixi = −
∑
i∈J2

βixi

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 11

so that

β :=
∑
i∈J1

βi ⇒
1

β

∑
i∈J1

βixi

belongs in the convex hulls of both X1 and X2.

Theorem 3.17 (Sauer’s Lemma): LetH be a hypothesis set such that VCdim(H) =
d. Then, for any m ∈ N, ΠH(m) ≤

∑d
i=0

(
m
i

)
Proof: We proceed by induction. The statement holds for m = 1 and d = 1
or d = 0. Then, assume the statement holds for (m− 1, d) and (m− 1, d− 1). We
then fix a sample S of size m given by S = (x1, ..., xm). Let G denote the space of
hypotheses due to S. Identifying each g ∈ G with those xi classified as 1 (rather
than −1), let G1 denote the space of hypotheses due to (x1, ..., xm−1) and let G2 de-
note those g ∈ G such that if Z ⊂ {0, 1}m−1 is expressed among the {x1, ..., xm−1},
so is Z ∪ xm. Hence, |G| = |G1|+ |G2|. Since G1 has VC dimension at most d while
G2 has VC dimension at most d− 1 (else G would also shatter a set of size d+1 by
adding xm). Therefore,

|G| ≤
d−1∑
i=0

(
m− 1

i

)
+

d∑
i=0

(
m− 1

i

)

=

d∑
i=1

(
m− 1

i− 1

)
+

d∑
i=1

(
m− 1

i

)
=

d∑
i=0

(
m

i

)

Corollary 3.18: Let H be a hypothesis set such that VCdim(H) = d. Then,

for any m ≥ d, ΠH(m) ≤
(

em
d

)d
= O(md)

Proof: From Sauer’s Lemma, we have that

ΠH(m) ≤
d∑

i=0

(
m

i

)
≤

d∑
i=0

(
m

i

)(m
d

)d−i

≤
m∑
i=0

(
m

i

)(m
d

)d−i

=
(m
d

)d m∑
i=0

(
m

i

)(d

m

)i
= (

m

d
)d(1 +

d

m
)m ≤

(em
d

)d

Corollary 3.19: Let H be a family of functions taking values in {−1, 1} with
VC-dimension d. Then, for any δ > 0,

P

[
R(h) ≤ R̂S(h) +

√
2d log em

d

m
+

√
log 1

δ

2m

]
≥ 1− δ

Proof: Combine Corollary 3.18 and Corollary 3.9.

Definition (Relative Entropy): The relative entropy (or Kullback Leibler Di-
vergence) of 2 distributions p and q is denoted D(p||q), and is defined by

D(p||q) = Ep

[
log

p(x)

q(x)

]
=
∑
x∈X

p(x) log(
p(x)

q(x)
)

12 LUCAS TUCKER

Sanov’s Theorem (D.3): Let X1, ..., Xm be independent variables drawn ac-
cording to some distribution D with mean p and support included in [0, 1]. Then,
for p̂ := 1

m

∑m
i=1 Xi and any q ∈ [0, 1], we have

P[p̂ ≥ q] ≤ e−mD(p||q)

Proof: We have

P[p̂ ≥ q] ≤ e−tmqE[etmp̂] = e−tmq
m∏
i=1

E[etXi] ≤ e−tmq
(
1− p+ pet

)m
=
(
(1− p)e−q log

q(1−p)
p(1−q) + pe(1−q) log

q(1−p)
p(1−q)

)m
= em(−q log q

p+(q−1) log 1−q
1−p)

where t ≥ 0 is used for the Chernoff bound

Theorem D.4: Let X1, ..., Xm be independent random variables drawn according
to some distribution D with mean p and support included in [0, 1]. Then, for any
γ ∈ [0, 1

p − 1], for p̂ := 1
m

∑m
i=1 Xi, we have

P[p̂ ≥ (1 + γ)p] ≤ e
−mpγ2

3

and

P[p̂ ≤ (1− γ)p] ≤ e
−mpγ2

2

Proof: For q = (1 + γ)p,

D(q||p) = (1 + γ)p log
p

(1 + γ)p
+ (1− (1 + γ)p) log

1− p

1− (1 + γ)p

= −p(1 + γ) log(1 + γ) + (1− (1 + γ)p) log(1 +
γp

1− (1 + γ)p
)

≤ (1+γ)p
−γ

1 + γ
2

+(1−p−γp) γp

1− p− γp
= −γp

(
1+

γ
2

1 + γ
2

−1
)
= − γ2p

2 + γ
≤ −γ2p

3

For q = (1− γ)p, we have

D(q||p) = (1− γ)p log
p

(1− γ)p
+ (1− (1− γ)p) log

1− p

1− (1− γ)p

= −p(1− γ) log(1− γ) + (1− (1− γ)p) log(1− γp

1− (1− γ)p
)

≤ (1− γ)p
γ

1− γ
2

+ (1− p+ γp)
−γp

1− p+ γp
= γp(

1− γ

1− γ
2

− 1) = − γ2p

2− γ
≤ −γ2p

2

Theorem 3.20: Let H be a hypothesis set with VC dimension d > 1. Then,
for any m ≥ 1 and any learning algorithm A, there exists a distribution D over X
and a target function f ∈ H such that

P[RD(hS , f) >
d− 1

32m
] ≥ 1

100

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 13

Proof: Let X = {x0, ..., xd−1} ⊂ X be shattered by H. For any ϵ > 0, choose D
such that its support is reduced to X and so that one point (x0) has probability
1− 8ϵ with the rest of the mass distributed uniformly, i.e. PD[x0] = 1− 8ϵ and for
any i ∈ [d− 1], PD[xi] =

8ϵ
d−1 . Without loss of generality, A makes no error on x0.

For a sample S, let S denote the set of its elements falling in {x1, ..., xd−1} and let
S denote samples S of size m such that |S| ≤ d−1

2 . Fix S ∈ S and consider the

uniform distribution U over all labelings f : X → {0, 1} (which are all in H since
the set is shattered). Then,

Ef∼U [RD(hS , f)] =
∑
f

∑
x∈X

1hS(x) ̸=f(x)P[x]P[f] ≥
∑
f

∑
x/∈S

1hS(x)̸=f(x)P[x]P[f]

=
1

2

∑
x/∈S

P[x] ≥ 1

2

d− 1

2

8ϵ

d− 1
= 2ϵ⇒ Ef∼U [ES∈S [RD(hS , f)]] ≥ 2ϵ

Hence ES∈S [RD(hS , f0)] ≥ 2ϵ for at least one labeling f0 ∈ H. Since RD(hS , f0) ≤
PD[X − {x0}], we have that

ES∈S [RD(hS , f0)] =
∑

S:RD(hS ,f0)≥ϵ

RD(hS , f0)P[RD(hS , f0)] +
∑

S:RD(hS ,f0)<ϵ

RD(hS , f0)P[RD(hS , f0)]

≤ PD[X − {x0}]PS∈S [RD(hS , f0) ≥ ϵ] + ϵ(1− PS∈S [RD(hS , f0) ≥ ϵ])

≤ 7ϵPS∈S [RD(hS , f0) ≥ ϵ] + ϵ⇒ P[S]
7
≤ 1

7
≤ PS∈S [RD(hS , f0) ≥ ϵ]

Then, for a set S = (x1, ..., xm) of size m, define Sm =
∑m

i=1 1xi∈X . Since each
1xi∈X has an expected value of 8ϵ, the mean is 8ϵm in this case. Then, for any
γ > 0, we use Theorem D.4 as

P[Sm ≥ 8ϵm(1 + γ)] ≤ e−8ϵm γ2

3

hence

ϵ =
(d− 1)

32m
, γ = 1⇒ 1− P[S] = P[Sm ≥

d− 1

2
] ≤ e−

d−1
12 ≤ e−

1
12 ≤ 1− 7δ

for δ ≤ 1
100 ≤

1−e−
1
12

7 . Then, 1− P[S] ≤ 1− 7δ so

7δ ≤ P[S]⇒ δ ≤ P[S]
7
≤ PS∈S [RD(hS , f0) ≥ ϵ]

Note: Since there exists a distribution over X for which the error of the hypothesis
returned by A (with respect to a target function f) is bounded by C · d

m , infinite
VC-dimension indicates that PAC-learning in the realizable case is not possible.

Slud’s Inequality Let X be a random variable following the binomial distribu-
tion B(m, p) and let k be an integer such that p ≤ 1

4 and k ≥ mp or p ≤ 1
2 and

mp ≤ k ≤ m(1− p). Then,

P[X ≥ k] ≥ P

[
N ≥ k −mp√

mp(1− p)

]
where N is in standard normal form.

14 LUCAS TUCKER

Normal distribution tails: Lower bound: If N is a random variable following
the standard normal distribution, then for u > 0 we have

P[N ≥ u] ≥ 1

2

(
1−

√
1− e−u2

)
Exercise D.3: Let xA and xB be random variables (coins), with P[xA = 0] = 1

2−
ϵ
2

and P[xB = 0] = 1
2 +

ϵ
2 , where 0 < ϵ < 1 is a small positive number, 0 denotes heads

and 1 denotes tails. Consider selecting a coin x ∈ {xA, xB} uniformly at random,
tossing it m times, and predicting which coin was tossed based on the sequence of
0s and 1s obtained.

a) Let S be a sample of size m. Consider playing the above game according to
the decision rule fo : {0, 1}m → {xA, xB} defined by fo(S) = xA if and only if
N(S) < m

2 , where N(S) is the number of 0’s in sample S. Suppose m is even.
Then, this rule fails in the case that x = xA yet at least half of the flips were heads.
Hence,

error(f0) = Ex[PDm
x
[fo(S) ̸= x]]

= P[x = xA]PDm
xA

[fo(S) ̸= xA] + P[x = xB]PDm
xB

[fo(S) ̸= xB]

≥ 1

2
P

[
N(S) ≥ m

2
| x = xA

]

b) Again assuming m is even, we find that N(S) follows the binomial distribu-
tion B(m, p) for p = 1

2 −
ϵ
2 , where m(12 −

ϵ
2) ≤

m
2 ≤ m(12 + ϵ

2). Hence, Slud’s
Inequality implies

P[N(S) ≥ m

2
] ≥ P

[
N ≥

m
2 −m(12 −

ϵ
2)√

m(12 −
ϵ
2)(

1
2 + ϵ

2)

]
= P

[
N ≥ ϵ

√
m√

1− ϵ2

]
to which we can apply the lower bound for normal distribution tails as

P
[
N ≥ ϵ

√
m√

1− ϵ2

]
≥ 1

2

(
1−

√
1− e

− mϵ2

1−ϵ2

)
hence

error(fo) ≥
1

4

(
1−

√
1− e

− mϵ2

1−ϵ2

)
c) Ifm is odd, then note that fo fails in the case that N(S) ≥ m

2 ⇐⇒ N(S) ≥ ⌈m2 ⌉.
Hence, N(S) effectively follows a binomial distribution (by adding an arbitrary
element to S) B(m+1, p) for p = 1

2−
ϵ
2 , where (m+1)(12−

ϵ
2) ≤ ⌈

m
2 ⌉ ≤ (m+1)(12+

ϵ
2).

Using Slud’s Inequality and the lower bound for normal distribution with p = 1
2−

ϵ
2 ,

we have

1

2
P
[
N(S) ≥ m

2

]
≥ 1

2
P

[
N ≥

m+1
2 − (m+ 1)p√
(m+ 1)p(1− p)

]
=

1

2
P

[
N ≥ ϵ

√
m+ 1√
1− ϵ2

]

≥ 1

4

(
1−

√
1− e

− ϵ2(m+1)

1−ϵ2

)
=

1

4

(
1−

√
1− e

−
2⌈m

2
⌉ϵ2

1−ϵ2

)
Since the rightmost expression holds as the same bound in the even case, both m
odd and even share this bound.

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 15

d) If the error of fo is to be at most δ, where 0 < δ < 1
4 , then

δ ≥ 1

4

(
1−

√
1− e

−
2⌈m

2
⌉ϵ2

1−ϵ2

)
⇒ (1− 4δ)2 ≤ 1− e

−
2⌈m

2
⌉ϵ2

1−ϵ2

⇒ −
2⌈m2 ⌉ϵ

2

1− ϵ2
≤ log

(
1− (1− 4δ)2

)
⇒ −1− ϵ2

2ϵ2
log
(
1− (1− 4δ)2

)
≤
⌈m
2

⌉
≤ m+ 1

2

⇒ m ≥ 1− ϵ2

ϵ2
log
(1

1− (1− 4δ)2

)
− 1

Note that ϵ→ 0⇒ m→∞

e) Now consider an arbitrary decision rule f : {0, 1}m → {xA, xB}. Note that,
if f(S′) = xA on a particular outcome S′ with N(S) ≥ m

2 then the error of f on

S′ is at least 1
2P
[
N(S) < m

2 | x = xA

]
≥ 1

2P
[
N(S) ≥ m

2 | x = xA

]
. Similarly, if

f(S′) = xA on an outcome S′ with N(S) < m
2 − 1, f errors on S′ with at least

1
2P
[
N(S) ≥ m

2 − 1 | x = xA

]
≥ 1

2P
[
N(S) ≥ m

2 | x = xA

]
, hence

error(f) ≥ 1

2
P
[
N(S) ≥ m

2
| x = xA

]
so that the lower bound in part d applies to all decision rules.

Lemma 3.21: Let α be a uniformly distributed random variable taking values
in {α−, α+}, where α− = 1

2 −
ϵ
2 and α+ = 1

2 + ϵ
2 . Let S be a sample of m ≥ 1

random variables X1, ..., Xm taking values in {0, 1} and drawn i.i.d. according to
the distribution Dα defined by PDα

[X = 1] = α. Then, if h : Xm → {α−, α+}, we
have

Eα[PDm
α
[h(S) ̸= α]] ≥ Φ

(
2

⌈
m

2

⌉
, ϵ

)

for Φ(m, ϵ) = 1
4

(
1−

√
1− e

− mϵ2

1−ϵ2

)
for all m and ϵ.

Proof: This follows from the previous exercise.

Lemma 3.22: Let Z be a random variable taking values in [0, 1]. Then, for
any γ ∈ [0, 1), we have

P[Z > γ] ≥ E[Z]− γ

1− γ
> E[Z]− γ

Proof: We find that

E[Z] ≤ (1)(P[Z > γ]) + (γ)(P[Z ≤ γ])

= P[Z > γ] + (γ)(1− P[Z > γ])⇒ E[Z]− γ ≤ P[Z > γ](1− γ)

16 LUCAS TUCKER

Theorem 3.23 (Lower bound, non-realizable case): let H be a hypothe-
sis set with VC-dimension d > 1. Then, for any m ≥ 1 and any learning algorithm
A, there exists a distribution D over X × {0, 1} such that

PS∼Dm

[
RD(hS)− inf

h∈H
RD(h) >

√
d

320m

]
≥ 1

64

or equivalently, for any learning algorithm, the sample complexity verifies

m ≥ d

320ϵ2

Proof: Let X = {x1, ..., xd} ⊂ X be a set shattered by H. For any α ∈ [0, 1] and
any vector σ = (σ1, ..., σd)

T ∈ {−1, 1}d, we define a distribution Dσ with support
X × {0, 1} as follows: for any i ∈ [d],

PDσ [(xi, 1)] =
1

d

(1
2
+

σiα

2

)
For i ∈ [d], we define the Bayes classifier as

h∗
Dσ

(xi) = argmaxy∈{0,1}P[y | xi]

Note that h∗
Dσ

is in H since X is shattered. Further, for all h ∈ H,

RDσ
(h)−RDσ

(h∗
Dσ

) = EDσ

[1
d

∑
x∈X

1h(x)̸=y

]
− EDσ

[1
d

∑
x∈X

1h∗
Dσ

(x) ̸=y

]

=
1

d

∑
x∈X

((1
2
+

α

2

)
−
(1
2
− α

2

))
1h(x)̸=h∗

Dσ
(x) =

α

d

∑
x∈X

1h(x) ̸=h∗
Dσ

(x)

Let hS denote the hypothesis returned by the learning algorithm A after receiving
the labeled sample S drawn according to Dσ. Let |S|x denote the number of
occurrences of a point x in S. Let U denote the uniform distribution over {−1, 1}d.
Then,

E σ∼U
S∼Dm

σ

[1
α
[RDσ

(hS)−RDσ
(h∗

Dσ
)]
]
=

1

d

∑
x∈X

E σ∼U
S∼Dm

σ

[
1hS(x) ̸=h∗

Dσ
(x)

]

=
1

d

∑
x∈X

Eσ∼U

[
PS∼Dm

σ
[hS(x) ̸= h∗

Dσ
(x)]

]

=
1

d

∑
x∈X

m∑
n=0

Eσ∼U

[
PS∼Dm

σ
[hS(x) ̸= h∗

Dσ
(x) | |S|x = n]

]
P[|S|x = n]

≥ 1

d

∑
x∈X

m∑
n=0

Φ(n+ 1, α)P[|S|x = n] ≥ 1

d

∑
x∈X

Φ
(m
d

+ 1, α
)
= Φ

(m
d

+ 1, α
)

Hence there exists σ ∈ {−1, 1}d such that

ES∼Dm
σ

[1
α
[RDσ (hS)−RDσ (h

∗
Dσ

)]
]
> Φ

(m
d

+ 1, α
)

By Lemma 3.22, for the same σ and any γ ∈ [0, 1] we have

PS∼Dm
σ

[1
α
[RDσ

(hS)−RDσ
(h∗

Dσ
)] ≥ γu

]
> (1− γ)u

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 17

for u = Φ
(

m
d + 1, α

)
. If we bound δ ≤ (1− γ)u and ϵ ≤ γαu, then

PS∼Dm
σ

[
RDσ

(hS)−RDσ
(h∗

Dσ
) > ϵ

]
> δ

For γ = 1− 8δ, we have

δ ≤ (1− γ)u ⇐⇒ u ≥ 1

8

⇐⇒ 1

4

(
1−

√
1− e

−
(m

d
+1)α2

1−α2

)
≥ 1

8
⇐⇒ 1

4
≥ 1− e

−
(m

d
+1)α2

1−α2

⇐⇒ −
(md + 1)α2

1− α2
≥ log

3

4
⇐⇒ m

d
≤ 1− α2

α2
log

4

3
− 1

Hence α = 8ϵ
1−8δ gives ϵ = γα

8 and

m

d
≤
((1− 8δ)2

64ϵ2
− 1
)
log

4

3
− 1 := f

(1

ϵ2

)
Then, to obtain a bound of the form m

d ≤
ω
ϵ2 , since ϵ ≤ 1

64 , it suffices to set
ω

(1
64)

2 = f
(

1
(1
64)

2

)
. Hence, for δ = 1

64 , we have ω = 1
(64)2 ((7

2 − 1) log 4
3 − 1) ≈ 1

320

so that ϵ2 ≤ 1
320(m/d) suffices.

Ch. 3 Exercises.

3.1. Let H be the set of intervals in R. The VC-dimension of H is 2, and its growth
function satisfies ΠH(m) ≤

∑m
i=0(m− i+ 1) = m2 +m−

∑m
i=0.

3.2. Let H be the family of threshold functions over the real line: H = {x 7→
1x≤θ | θ ∈ R} ∪ {x 7→ 1x≥θ | θ ∈ R}. In this case, given m points in R, we can
exclude or include all, as well as include from opposite sides of the real line. Hence,
Πm(H) ≤ 2 + (m− 1)(2) = 2m. Hence,

Rm(G) ≤
√

2 log(2m)

m

3.3. We define a linearly separable labeling of a set X of vectors in Rd as a clas-
sification of X into two sets X+ and X− with X+ = {x ∈ X | w · x > 0} and
X− = {x ∈ X |w ·x < 0} for some w ∈ Rd. Let X = {x1, ..., xm} be a subset of Rd.

(a) Let {X+,X−} be a dichotomy of X and let xm+1 ∈ Rd. Suppose that {X+,X−}
is linearly separable by a hyperplane

w · x = 0, w ∈ Rd

passing through the origin and xm+1 = (x1
m+1, ..., x

d
m+1). Then, since

d∑
i=1

xi
m+1wi = 0

there exist ϵ1, ϵ2 ∈ R and j, k ∈ {1, ..., d} for which w′ := (w1, ..., wj ± ϵ1, ..., wd)
and w′′ := (w1, ..., wk ± ϵ1, ..., wd) satisfy

(wj ± ϵ1)x
j
m+1 +

∑
i ̸=j

xi
m+1wi > 0

18 LUCAS TUCKER

(wk ± ϵ2)x
j
m+1 +

∑
i ̸=k

xi
m+1wi < 0

and w · x = 0 still separates {X+,X−}.

Conversely, if {X+,X− ∪ {xm+1}} and {X+ ∪ {xm+1},X−} are linearly separa-
ble by hyperplanes, those hyperplanes separate {X+,X−}.

b) Let X = {x1, ..., xm} be a subset of Rd such that any k-element subset of X
with k ≤ d is linearly independent. Let C(m, d) denote the number of linearly sep-
arable labelings of X . Then, we find that C(m+1, d) counts the linearly separable
labelings in the m case for Rd, and also double counts those cases in which the hy-
perplane (given by a vector w ∈ Rd) can intersect the m+1-th vector. In such cases,
the m+ 1-th vector may belong to either X+ or X− by part (a), thereby defining
two linearly separable labelings. Hence, C(m+ 1, d) = C(m, d) + C(m, d− 1). For
m = 1, we have 1 = C(2, 1) = C(1, 1) + C(1, 0) = 1 + 0. We may now inductively
assume

C(m, d) = 2

d−1∑
k=0

(
m− 1

k

)
, C(m, d− 1) = 2

d−2∑
k=0

(
m− 1

k

)
Then,

C(m+ 1, d) = 2

d−1∑
k=0

(
m− 1

k

)
+ 2

d−2∑
k=0

(
m− 1

k

)

= 2

d−1∑
k=0

(
m− 1

k

)
+ 2

d−1∑
k=0

(
m− 1

k − 1

)
= 2

d−1∑
k=0

(
m

k

)

c) Let f1, ..., fp be p functions mapping Rd to R. Define F as the family of classifiers
based on linear combinations of the functions:

F =

{
x 7→ sgn

(p∑
k=1

akfk(x)
)
: a1, ..., ap ∈ R

}
Define Ψ by Ψ(x) = (f1(x), ..., fp(x)). Assume that there exists x1, ..., xm ∈ Rd

such that every p-subset of {Ψ(x1), ...,Ψ(xm)} is linearly independent. In this case,

ΠF (m) = sup
{x1,...,xm}⊂Rd

|{g(x1), ..., g(xm) : g ∈ F}|

so since each set {g(x1), ..., g(xm)} represents a linearly separable labeling of the
p-dimensional points {Ψ(x1), ...,Ψ(xm)},

sup
{x1,...,xm}⊂Rd

|{g(x1), ..., g(xm) : g ∈ F}| = 2

p−1∑
i=0

(
m− 1

i

)
using part (b) and . Therefore,

ΠF (m) = 2

p−1∑
i=0

(
m− 1

i

)

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 19

3.11. For an input space X := Rn1 , we consider the family of regularized neural
networks defined by the following set of functions mapping X to R:

H =

{
x 7→

n2∑
j=1

wjσ(uj · x) : ||w||1 ≤ Λ′, ||uj ||2 ≤ Λ, for any j ∈ [n2]

}
where σ is an L-Lipschitz function (e.g. σ could be the sigmoid function which is
1-Lipschitz).

a) We find that

R̂S(H) = Eσ

[
sup
h∈H

1

m

m∑
i=1

σih(xi)
]
= Eσ

[
sup
w,uj

1

m

m∑
i=1

σi

n2∑
j=1

wjσ(uj · xi)
]

=
1

m
Eσ

[
sup
w

n2∑
j=1

wj sup
||u||2≤Λ

m∑
i=1

σiσ(u · xi)
]
=

Λ′

m
Eσ

[
sup

||u||2≤Λ

m∑
i=1

σiσ(u · xi)
]

b) We now use the following form of Talagrand’s lemma valid for all hypothesis
sets H and L-lipschitz functions Φ:

1

m
Eσ

[
sup
h∈H

∣∣∣∣∣
m∑
i=1

σi(Φ ◦ h)(xi)

∣∣∣∣∣
]
≤ L

m
Eσ

[
sup
h∈H

∣∣∣∣∣
m∑
i=1

σih(xi)

∣∣∣∣∣
]

so that

R̂S(H) ≤
Λ′L

m
Eσ

[
sup

||u||2≤Λ

m∑
i=1

σi(u · xi)
]
≤ Λ′LEσ

[
sup
h∈H′

1

m

m∑
i=1

σih(xi)

]

= Λ′LR̂S(H′)

c) We then find that

R̂S(H′) = Eσ

[
sup
s,u

1

m

m∑
i=1

σis(u · xi)
]
= Eσ

[
1

m

∣∣∣∣∣∣u∣∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣

m∑
i=1

σixi

∣∣∣∣∣
∣∣∣∣∣
2

]

=
Λ

m
Eσ

[∣∣∣∣∣
∣∣∣∣∣

m∑
i=1

σixi

∣∣∣∣∣
∣∣∣∣∣
2

]

d) By Jensen’s inequality, we have

Ev[||v||2] ≤
√
Ev[||v||22]

hence

R̂S(H′) ≤ Λ

m

√√√√Eσ

[∣∣∣∣∣
∣∣∣∣∣

m∑
i=1

σixi

∣∣∣∣∣
∣∣∣∣∣
2

2

]

20 LUCAS TUCKER

e) If for any x ∈ S we have ||x||2 ≤ r for some r > 0, then

R̂S(H) ≤ Λ′L

(
Λ

m

√√√√(m∑
i=1

||σixi||2
)2)

≤ Λ′L
(Λ
m
(mr)

)
= Λ′ΛLr

3.27. Let C be a concept class over Rr with VC-dimension d. A C-neural network
with one intermediate layer is a concept defined over Rn that can be represented
by a direct acyclic graph in which the input nodes are those at the bottom and in
which each other node is labeled with a concept c ∈ C.

The output of the neural network for a given input vector (x1, ..., xn) is obtained
as follows. First, each of the n input nodes is labeled with the corresponding value
xi ∈ R. Next, the value at a node u in the higher layer (labeled with c) is obtained
by applying c to the values of the input nodes admitting an edge ending in u. Since
c ∈ {0, 1}, u ∈ {0, 1}. The value at the top (output) node is obtained similarly by
applying the corresponding concept to the values of the nodes admitting an edge
to the output node.

a) Let H denote the set of all neural networks defined with k ≥ 2 internal nodes.
Let ΠC(m) = maxz1,...,zm⊂Rr |{(c(z1), ..., c(zm)) : c ∈ C}| denote the growth func-

tion of the concept class C. We then have ΠH(m) ≤
(
Πc(m)

)k+1

if there are k

intermediate nodes and 1 final node.

b) Since ΠH(m) ≤ ΠC(m)k+1, by Sauer’s Lemma we have

ΠC(m) ≤
(em

d

)d
⇒ ΠH(m) ≤

(em
d

)d(k+1)

so that

m := 2(k + 1)d log2(ek + e)⇒ m > d(k + 1) log2

(em
d

)
hence

2m >
(em

d

)d(k+1)

so since we must have

2m
∗
≤
(em∗

d

)d(k+1)

for the VC-dimension m∗, we have that

VCdim(H) ≤ 2(k + 1)d log2(ek + e)

c) Let C be the family of concept classes defined by threshold functions C ={
sgn
(∑r

j=1 wjxj

)
: w ∈ Rr

}
. In this case, VCdim(C) = r since the r-dimensional

vectors with 1’s in the i-th spot may be shattered but not the origin x0 (since C
does not involve a term added to the dot product. Hence,

VCdim(H) ≤ 2(k + 1)r log2(ek + e)

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 21

3.31. Let H be a family of functions mapping X to a subset of real numbers
Y ⊂ R. For any ϵ > 0, the “covering number” N (H, ϵ) of H for the L∞ norm
is the minimal k ∈ N such that H can be covered with k balls of radius ϵ, i.e.
there exists {h1, ..., hk} ⊂ H such that for all h ∈ H there exists i ≤ k with
||h − hi||∞ = maxx∈mcX |h(x) − hi(x)| ≤ ϵ. Hence, when H is compact, the finite
subcover due to an ϵ covering of H indicates that N (H, ϵ) is finite.

Let D denote a distribution of X×Y according to which labeled examples are drawn.

Then, for h ∈ H, R(h) = E(x,y)∼D[(h(x)− y)2] and R̂S(h) =
1
m

∑m
i=1(h(xi)− yi)

2

for a lebeled sample S = ((x1, y1), ..., (xm, ym)). Suppose H is bounded and that
there exists M > 0 such that |h(x)− y| ≤M for all (x, y) ∈ X × Y.

a) Let LS(h) = R(h)− R̂S(h). Then, we find that

|LS(h1)−LS(h2)| =
∣∣∣E[(h1(x)−y)2−(h2(x)−y)2]+

1

m

m∑
i=1

(h2(xi)−yi)2−(h1(xi)−yi)2
∣∣∣

=
∣∣∣E[h1(x)

2−2h1(x)y−(h2(x)
2−2h2(x)y)]+

1

m

m∑
i=1

h1(xi)
2−2h1(xi)yi−(h2(xi)

2−2h2(xi)yi)
∣∣∣

=
∣∣∣E[(h1(x)− h2(x))(h1(x)− y)− (h2(x)− h1(x))(h2(x)− y)]+

1

m

m∑
i=1

(h1(xi)− h2(xi))(h1(xi)− yi)− (h2(xi)− h1(xi))(h2(xi)− yi)
∣∣∣

≤ |ME[h1(x)− h2(x)]|+ |ME[h2(x)− h1(x)]|+
1

m

m∑
i=1

2M max
i
|h1(xi)− h2(xi)|

≤ 4M ||h1 − h2||∞

b) Assume that H can be covered by k subsets B1, ...,Bk, i.e. H = B1 ∪ ... ∪ Bk.
Fix ϵ > 0. We then have that

PS∼Dm

[
sup
h∈H
|LS(h)| ≥ ϵ

]
= PS∼Dm

[
sup
h∈B1

|LS(h)| ≥ ϵ ∨ ... ∨ sup
h∈Bk

|LS(h)| ≥ ϵ
]

≤
k∑

i=1

PS∼Dm

[
sup
h∈Bi

|LS(h)| ≥ ϵ
]

by the union bound.

c) We then let k = N (H, ϵ
8M) and let B1, ...,Bk be balls of radius ϵ

8M centered
at h1, ..., hk covering H. Fix i ∈ [k]. Note that if h′ := argmaxh∈Bi

|LS(h)|, then
since

|LS(h
′)− LS(hi)| ≤ 4M ||h′ − hi||∞ ≤

ϵ

2
we have

|LS(h
′)| ≥ ϵ⇒ |LS(hi)| ≥

ϵ

2
hence

PS∼Dm

[
sup
h∈Bi

|LS(h)| ≥ ϵ
]
≤ PS∼Dm

[
|LS(hi)| ≥

ϵ

2

]

22 LUCAS TUCKER

so by Hoeffding’s Inequality and part b),

PS∼Dm

[
sup
h∈H
|LS(h)| ≥ ϵ

]
≤

k∑
i=1

PS∼Dm

[
sup
h∈Bi

|LS(h)| ≥ ϵ
]

≤
k∑

i=1

PS∼Dm

[
|LS(hi)| ≥

ϵ

2

]
=

k∑
i=1

PS∼Dm

[
|R(h)− R̂S(h)| ≥

ϵ

2

]

≤ 2ke
−

2(ϵ
2
)2∑m

i=1
(M2

m
)2 = 2N

(
H, ϵ

8M

)
e−

mϵ2

2M2

Chapter 4 Notes

Definition: A standard algorithm to bound estimation error is Empirical Risk
Minimization (ERM):

hERM
S = argminh∈HR̂S(h)

Proposition 4.1: For any sample S, the following inequality holds for the hy-
pothesis returned by ERM:

P
[
R(hERM

S)− inf
h∈H

R(h) > ϵ
]
≤ P

[
sup
h∈H
|R(h)− R̂S(h)| >

ϵ

2

]

Proof: We find that

ϵ < R(hERM
S)− inf

h∈H
R(h) ≤ |R(hERM

S)− R̂S(h
ERM
S)|+ | inf

h∈H
R(h)− R̂S(h

ERM
S)|

so at least one of the terms on the right hand side exceeds ϵ
2 , hence

sup
h∈H
|R(h)− R̂S(h)| >

ϵ

2

satisfying

P
[
R(hERM

S)− inf
h∈H

R(h) > ϵ
]
≤ P

[
sup
h∈H
|R(h)− R̂S(h)| >

ϵ

2

]

Definition: Regularization-based algorithms consist of selecting a family H that
is an uncountable union of nested hypothesis sets Hγ , i.e. H =

⋃
γ>0Hγ , and H is

often chosen to be dense in the space of continuous functions over X . Often there
exists R : H → R such that, for any γ > 0, the constrained optimization problem

argminγ>0,h∈HR̂S(h) + pen(γ,m)

where pen(γ,m) refers to a penalty term such as Rm(Hγ)+
√

log γ
m , can be written

as the unconstrained optimization problem

argminh∈HR̂S(h) + λR(h)
for some λ > 0. Note that R(h) is a “regularization term— and λ is treated as a
“regularization” hyperparameter (optimal value not known). Larger λ helps penal-
ize more complex hypotheses while λ ≈ 0 coincides with ERM. Cross-validation or
n-fold cross-validation help select a value for λ.

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 23

Remark: Solving the ERM optimization problem is often NP-hard since the zero-
one loss function is not convex, hence using a convex “surrogate” loss function can
help upper bound the zero-one loss. In particular, for real-valued h : X → R, we
denote the binary classifier

fh(x) =

{
1 h(x) ≥ 0

−1 h(x) < 0

and define the expected error R(h) as

R(h) = E(x,y)∼D[1fh(x)̸=y]

For any x ∈ X we write η(x) := P[y = 1|x]. For DX the marginal distribution over
X and any h, we then have

R(h) = E(x,y)∼D[1fh(x)̸=y] = Ex∼DX

[
η(x)1h(x)<0 + (1− η(x))1h(x)≥0

]
We then define the “Bayes scoring function” h∗ : X → R as

h∗(x) := η(x)− 1

2

where

R∗ := R(h∗)

denotes the error of the Bayes scoring function.

Lemma 4.5: The “excess error” of any hypothesis h : X → R can be expressed as

R(h)−R∗ = 2Ex∼DX

[
|h∗(x)|1h(x)h∗(x)≤0

]

Proof: For any h we have

R(h) = Ex∼DX [η(x)1h(x)<0 + (1− η(x))1h(x)≥0]

= Ex∼DX [η(x)1h(x)<0 + (1− η(x))(1− 1h(x)<0)]

= Ex∼DX [2η(x)1h(x)<0 + 1− 1h(x)<0 − η(x)]

= Ex∼DX [2h
∗(x)1h(x)<0 + (1− η(x))]

so that

R(h)−R∗ = 2Ex∼DX [h
∗(x)1h(x)<0 − h∗(x)1h∗(x)<0]

= 2Ex∼DX [1h(x)h∗(x)≤0|h∗(x)|]

Definition: Let Φ : R → R be a convex and non-decreasing function so that
for any u ∈ R, 1u≤0 ≤ Φ(−u). The “Φ-loss” of a function h : X → R at a point
(x, y) ∈ X × {−1, 1} is defined as Φ(−yh(x)) and its expected loss is given by

LΦ(h) := E(x,y)∼D[Φ(−yh(x))]

= Ex∼DX [η(x)Φ(−h(x)) + (1− η(x))Φ(h(x))]

24 LUCAS TUCKER

Note that 1u≤0 ≤ Φ(−u)⇒ R(h) ≤ LΦ(h).

Definition: We further define u 7→ LΦ(x, u) for any x ∈ X and u ∈ R as

LΦ(x, u) = η(x)Φ(−u) + (1− η(x))Φ(u)

so that LΦ(h) = Ex∼DX [LΦ(x, h(x))] Note that since Φ is convex, so is u 7→
LΦ(x, u).

Definition: Let h∗
Φ : X → [−∞,∞] denote the “Bayes solution for the loss function

LΦ”, i.e. h
∗
Φ(x) solves the convex optimization problem:

h∗
Φ(x) = argminu∈[−∞,∞]LΦ(x, u)

Note that this solution may not be unique. We lastly define

L∗
Φ := E(x,y)∼D[Φ(−yh∗

Φ(x))]

Proposition 4.6: Let Φ be a convex non-decreasing function with Φ′(0) > 0.
Then, for any x ∈ X , h∗

Φ(x) > 0 ⇐⇒ h∗(x) > 0 and h∗(x) = 0 ⇐⇒ h∗
Φ(x) = 0,

hence L∗
Φ = R∗

Theorem 4.7: Let Φ be a convex and non-decreasing function. Assume that
there exists s ≥ 1 and c > 0 such that the following holds for all x ∈ X :

|h∗(x)|s = |η(x)− 1

2
|s ≤ cs[LΦ(x, 0)− LΦ(x, h

∗
Φ(x))]

Then, for any hypothesis h, the excess error of h satisfies

R(h)−R∗ ≤ 2c(LΦ(h)− L∗
Φ)

1
s

Proof: First note that, for sgn(h) ̸= sgn(h∗)

(∗) η(x)Φ(0) + (1− η(x))Φ(0) = Φ(0) ≤ η(x)(Φ(−h(x))) + (1− η(x))Φ(h(x))

as h > 0 for η(x) < 1
2 and h < 0 for η > 1

2 , and Φ is non-decreasing with non-
decreasing derivative.

We find that

R(h)−R∗ = 2Ex∼DX [|h∗(x)|1h(x)h∗(x)≤0]

≤ 2Ex∼DX [c(LΦ(x, 0)− LΦ(x, h
∗
Φ(x)))

1
s 1h(x)h∗(x)≤0]

= 2cEx∼DX [((LΦ(x, 0)− LΦ(x, h
∗
Φ(x)))1h(x)h∗(x)≤0)

1
s]

and since x 7→ x
1
s is a concave function for s ≥ 1,

≤ 2c(Ex∼DX [(LΦ(x, 0)− LΦ(x, h
∗
Φ(x)))1h(x)h∗(x)≤0])

1
s

By (∗) we then have

≤ 2c(Ex∼DX [(LΦ(x, h(x))− LΦ(x, h
∗
Φ(x)))1h(x)h∗(x)≤0])

1
s

so since since LΦ(x, h(x)) ≥ LΦ(x, h
∗
Φ(x)) for any h,

≤ 2c(Ex∼DX [LΦ(x, h(x))− LΦ(x, h
∗
Φ(x))])

1
s = 2c(LΦ(h)− L∗

Φ)
1
s

Ch. 4 Exercises.

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 25

4.1. We find that, for any h ∈ H, R̂S(h
ERM
S) ≤ R̂S(h), hence ES∼Dm [R̂S(h

ERM
S)] ≤

infh∈H ES∼Dm [R̂S(h)]. Further, R(hERM
S) ≥ infh∈H R(h) for any S ∼ Dm, hence

infh∈H ES∼Dm [R̂S(h)] ≤ ES∼Dm [R(hERM
S)]

4.2. Let Φ(u) = (1 + u)2, so that Φ is non-decreasing on [−1,∞] and convex with
Φ′′(u) = 2 > 0. We observe that

η(x)Φ(−u) + (1− η(x))Φ(u) = (1 + u)2 − 4η(x)u

so for η = 0,

|h∗(x)|2 =
1

4
= (

1

2
)2(1− inf

u
((1 + u)2))

For η = 1
2 we have

|h∗(x)|2 = 0 =
1− infu(1 + u2)

4
= (

1

2
)2(1− inf

u
((1 + u)2 − 2u))

For η = 1
2 + ϵ with ϵ ∈ (0, 1

2], since infu
u2−4uϵ

4 ≤ −ϵ2,

|h∗(x)|2 = ϵ2 = −4ϵ2 − 8ϵ2

4
≤ − inf

u

u2 − 4uϵ

4
=

1− infu((1 + u)2 − 4u(12 + ϵ))

4

Similarly, for η = 1
2 − ϵ with ϵ ∈ (0, 1

2], since infu
u2−4uϵ

4 ≤ −ϵ2 (choosing u = −2ϵ),

|h∗(x)|2 = ϵ2 = −4ϵ2 − 8ϵ2

4
≤ − inf

u

u2 + 4uϵ

4

=
1− infu((1 + u)2 − 4u(12 − ϵ))

4
=

1

4
(Φ(0)−LΦ(x, h

∗
Φ(x))) =

1

4
(LΦ(x, 0)−LΦ(x, h

∗
Φ(x)))

Hence, for s = 2 and c = 1
2 we have

R(h)−R∗ ≤ [LΦ(h)− L∗
Φ]

1
2

4.3. We then consider the Hinge loss Φ(u) = max(0, 1+ u)2. Since this function is
the same as that in 4.2 on [−1,∞], the same bounds hold.

4.4. Define the loss of h : X → R at a point (x, y) ∈ X × {−1, 1} to be 1yh(x)≤0.

a) The Bayes classifier in this case is

h′(x) := argminy∈{−1,1}P[y|x]
hence a scoring function could be

h∗(x) :=

{
η(x)− 1

2 η(x) ̸= 1
2

−1 η(x) = 1
2

where η(x) = P[1|x].

b) In this case, replacing 1h(x)≤0 with 1h(x)<0 + 1h(x)=0 yields

R(h) = Ex∼DX [η(x)(1− 1h(x)>0) + (1− η(x))(1h(x)>0 + 1h(x)=0)]]

R(h)−R∗ = E(x,y)∈D[1yh(x)≤0 − 1yh∗(x)≤0]

= Ex∼DX [η(x)1h(x)≤0 + (1− η(x))1h(x)≥0 − (η(x)1h∗(x)≤0 + (1− η(x))1h∗(x)≥0)]

where replacing 1h(x)≤0 with 1h(x)<0 + 1h(x)=0 yields

26 LUCAS TUCKER

= Ex∼DX [2|h∗(x)|1h(x)∗h∗(x)≤0 + (−h∗(x) +
1

2
)(1h(x)=0 − 1h∗(x)=0)]

Chapter 15 Notes

Definition: A projection on a vector space V is a linear operator P : V → V
such that P 2 = P . A projection on a Hilbert space V is an orthogonal projection
if ⟨Px, y⟩ = ⟨x, Py⟩

Definition: The “Frobenius norm”, denoted by ||.||F is a matrix norm defined
over Rm×n as

||M||F :=

√√√√ m∑
i=1

n∑
j=1

M2
ij

Definition: For a sample S = (x1, ..., xm) and feature mapping Φ : X → RN ,
we define the data matrix (Φ(x1), ...,Φ(xm)) =: X ∈ RN×m. If X is a mean-
centered data matrix (

∑m
i=1 Φ(xi) = 0), let Pk denote the set of N -dimensional

rank−k orthogonal projection matrices. PCA (Principal Component Analysis) is
defined by the orthogonal projection matrix

P∗ := argminP∈Pk
||PX−X||2F

Definition: The “top singular vector” of a matrix M is the vector x which maxi-
mizes the Rayleigh quotient

r(x,M) =
xTMx

xTx

Theorem 15.1: Let P∗ ∈ Pk be the PCA solution for a centered data matrix
X. Then, P∗ = UkU

T
k , where Uk ∈ RN×k is the matrix formed by the top k

singular vectors of C := 1
mXXT , the sample covariance matrix corresponding to

X. Note that this is the sample covariance matrix since

1

m
(XXT)ij =

1

m

m∑
ℓ=1

XiℓX
T
ℓj =

1

m

m∑
ℓ=1

Φ(xℓ)iΦ(xℓ)j

= E[Φ(x)iΦ(x)j] = E[Φ(x)iΦ(x)j]− E[Φ(x)i]E[Φ(x)j] = Cov(Φ(x)i,Φ(x)j)

where the right hand term is the covariance between i-th and j-th coordinates of
the feature output based on m samples. Moreover, the associated k-dimensional
representation of X is given by Y = UT

kX.

Proof: For P = PT an orthogonal projection matrix, we seek to minimize

||PX−X||2F =

N∑
i=1

N∑
j=1

((PX−X)ij)
2 = Tr[(PX−X)T (PX−X)]

= Tr[XTP2X−XTPTX−XTPX+XTX] = Tr[XTPX− 2XTPX+XTX]

= Tr[X2]− Tr[XTPX]

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 27

hence we seek to maximize

Tr[XTPX] = Tr[XTUkU
T
kX] = Tr[UT

kXXTUk]

=

k∑
i=1

(N∑
j=1

(UT
kXXT)ij(Uk)ji

)
=

k∑
i=1

(N∑
j=1

(N∑
ℓ=1

(UT
k)iℓ(XXT)ℓj

)
(Uk)ji

)
so for ui := ((Uk)1i, ..., (Uk)Ni),

=

N∑
i=1

(
uT
i XXTui

)
where

PX = UkU
T
kX

so that Y := UT
kX is a k-dimensional representation of X.

Note: The top singular vectors of C are the directions of maximal variance in
the data, and the ui are the variances, so that PCA may be understood as projec-
tion onto the subspace of maximal variance.

b) In the 1-dimensional case, PCA seeks to minimize ||PX −X||2F , which by part
a) gives the direction in which projection yields maximal variance.

Remark: In Kernel principle component analysis (KPCA), the feature map Φ
send X to an arbitrary Reproducing Kernel Hilbert Space (RKHS) equipped with
its own inner product (kernel function K).

Definition: Isomap extracts the low-dimensional data that best preserves pair-
wise distances between inputs based on their geodesic distances along a manifold.
The algorithm is specified as follows:

1. Using the L2 norm, find the t closest neighbors for each data point and construct
an undirected neighborhod graph G, in which points are nodes and links are edges.

2. Compute approximate geodesic distances ∆ij between all pairs of nodes (i, j) by
computing all-pairs shortest distances in G.

3. Calculate them×m similarity matrix asKIso := − 1
2 (Im−

1
m11T)∆(Im− 1

m11T),
where 1 is a column vector of all ones and ∆ is the squared distance matrix.

4. Find the optimal k-dimensional representation Y = {yi}ni=1 where

Y = argminY′

∑
i,j

(
||y′

i − y′
j ||22 −∆2

ij

)
given by

Y = (ΣIso, j)
1
2UT

Iso,k

Note that ΣIso, j is the diagonal matrix of the top k singular values of KIso and
uIso, k are the corresponding singular vectors. Further, KIso serves as a kernel ma-
trix (similarity matrix for data points in feature space) if it is positive semidefinite.

28 LUCAS TUCKER

Definition The Laplacian Eigenmaps algorithm aims to find a k-dimensional rep-
resentation of the data matrix X which best preserves the weighted neighborhood
relations specified by a matrix W:

1. Find the t nearest neighbors of each point

2. Define W ∈ Rm×m as Wij := e
||xi−xj ||

2
2

σ2 if xi and xj are neighbors, or as 0
otherwise, where σ is a scaling parameter.

3. Construct a diagonal matrix D ∈ Rm×m as Dii =
∑m

j=1 Wij .

4. Find Y ∈ Rk×m satisfying

argminY′

{∑
i,j

Wij ||y′
i − y′

j ||22
}

Intuitively, the above minimization penalizes k-dimensional representations of neigh-
bors that differ largely under the L2 norm.

Proposition (LE definition): The solution to the Laplacian eigenmap mini-
mization is UT

L,k, where L = D −W is the “graph Laplacian” and UT
L,k are the

bottom k singular vectors of L (excluding 0 if the underlying neighborhood graph
has connections).

Proof: We find that, for x ∈ RN and Y ∈ Rk×m we have

(YLYT)ij =

m∑
ℓ=1

YT
iℓ(LY)ℓj =

m∑
ℓ=1

Yℓi

(m∑
t=1

LℓtYtj

)

(∗) =
∑
ℓ=1

Yℓi

∑
t̸=ℓ

Wℓt(Yℓj −Ytj)

while ∑
i,ℓ

Wiℓ||y′
i − y′

ℓ||22 =
m∑
i=1

m∑
ℓ=1

Wiℓ(y
′
i − y′

ℓ)
T (y′

i − y′
ℓ)

=

m∑
i=1

m∑
ℓ=1

Wiℓ((y
′
i)

2 − 2(y′T
ℓ y′

i) + (y′
ℓ)

2)

=

m∑
i=1

m∑
ℓ=1

Wiℓ

(m∑
j=1

(y′
i)

2
j − 2(y′

ℓ)j(y
′
i)j + (y′

ℓ)
2
j

)

=

m∑
i=1

m∑
ℓ=1

Wiℓ

(m∑
j=1

Y′
ji

2 − 2Y′
jℓY

′
ji +Y′

jℓ
2
)

hence by (∗)

=

k∑
i=1

(Y′LY′T)ii

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 29

so for Y := Y′T , by the final simplication used in Theorem 15.1,

=

k∑
i=1

yT
i Lyi

Remark (PCA Gradient Descent): From Theorem 15.1, we have that

∂

∂(Uk)ab
||PX −X||2F = − ∂

∂(Uk)ab

k∑
i=1

N∑
j=1

N∑
ℓ=1

(UT
k)iℓ(XXT)ℓj(Uk)ji

= −

(
2(Uk)ab(XXT)aa +

N∑
ℓ ̸=a

(UT
k)bℓ(XXT)ℓa +

N∑
j ̸=a

(XXT)aj(Uk)jb

)

= −2
N∑
ℓ=1

(Uk)ℓb(XXT)aℓ

since

XXT
ij =

m∑
s=1

XisX
T
sj =

m∑
s=1

XjsX
T
si = XXT

ji

so for F (Uk) = ||UkU
T
k X −X||2F and DF (Uk)ji =

∂
∂(Uk)ji

||PX −X||2F , we perform

gradient descent steps as
Uk − λDF (Uk)

for step size λ.

Ch. 15 Exercises.

15.1. Let X be an uncentered data matrix and let x := 1
m

∑N
i=1 xi be the sample

mean of the columns of X.

a) We require

Cij = Cov(Φ(x)i,Φ(x)j) = E[Φ(x)iΦ(x)j]− E[Φ(x)i]E[Φ(x)j]

=
1

m

m∑
ℓ=1

Φ(xℓ)iΦ(xℓ)j − xixj =
1

m

m∑
ℓ=1

(xℓ)i(xℓ)j − xixj

=
1

m

(m∑
ℓ=1

(xℓ)i(xℓ)j − (xℓ)i(xj)− (xℓ)j(xi) + (xi)(xj)
)

hence

C =
1

m

m∑
ℓ=1

(xℓx
T
ℓ − xℓx

T − xTxℓ + xTx) =
1

m

m∑
i=1

(xi − x)(xi − x)T

Then, for a vector u ∈ RN , we have

Var(uTxi) = E[(uTxi)
2]− E[uTxi]

2

=
1

m

(m∑
i=1

(uTxi)
2
)
− (uTx)2 =

1

m

(m∑
i=1

(uTxi)
2 − (uTx)2

)
=

1

m

m∑
i=1

uT (xix
T
i − xix

T − xTxi + xTx)u = uCuT

30 LUCAS TUCKER

15.2. In this problem we prove the correctness of double centering (computing
KIso) using Euclidean distance. Define X as in 15.1, and define X∗ to have
x∗
i := xi − x as its i-th column. Let K := XXT and let D denote the Euclidean

distance matrix with Dij = ||xi − xj ||. Further, let ∆ denote the squared distance
matrix with ∆ij = D2

ij .

a) We find that

Kij =

m∑
ℓ=1

XT
iℓXℓj =

1

2

(m∑
ℓ=1

X2
ℓi −X2

ℓi +X2
ℓj −X2

ℓj + 2XℓiXℓj

)

=
1

2

(m∑
ℓ=1

X2
ℓi +X2

ℓj − (Xℓj −Xℓi)
2
)
=

1

2
(Kii +Kjj − ||xi − xj ||2)

=
1

2
(Kii +Kjj −D2

ij)

b) Let K∗ := X∗TX∗. We first find that

1

m
(K11T)ij =

1

m

m∑
t=1

Kit =
1

m

m∑
t=1

m∑
ℓ=1

XℓiXℓt =

m∑
ℓ=1

(x)ℓ(xi)ℓ

1

m
(11TK)ij =

1

m

m∑
t=1

Ktj =
1

m

m∑
t=1

m∑
ℓ=1

XℓtXℓj =

m∑
ℓ=1

(x)ℓ(xj)ℓ

and

1

m2
(11TK11T)ij =

1

m2

m∑
t=1

(11T)it(K11T)tj =
1

m

m∑
t=1

m∑
ℓ=1

(x)ℓ(xt)ℓ =

m∑
ℓ=1

(xℓ)
2

Then,

K∗
ij =

N∑
ℓ=1

X∗
iℓ
TX∗

ℓj =

N∑
ℓ=1

(xi − x)ℓ(xj − x)ℓ

=

N∑
ℓ=1

(xi)ℓ(xj)ℓ − (xi)ℓ(x)ℓ − (xj)ℓ(x)ℓ + (x)2ℓ

= Kij −
1

m
(K11T)ij −

1

m
(11TK)ij +

1

m2
(11TK11T)ij

so that

K∗ = K− 1

m
K11T − 1

m
11TK+

1

m2
11TK11T

c) We find that

K∗
ij = Kij −

1

m
(K11T)ij −

1

m
(11TK)ij +

1

m2
(11TK11T)ij

=
1

2
(Kii +Kjj −D2

ij)−
1

m
(K11T)ij −

1

m
(11TK)ij +

1

m2
(11TK11T)ij

=
1

2
(Kii +Kjj −D2

ij)−
1

m

m∑
t=1

Kit −
1

m

m∑
t=1

Ktj +
1

m2

m∑
t=1

m∑
ℓ=1

Ktℓ

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 31

=
1

2
(Kii+Kjj−D2

ij)−
1

2m

m∑
t=1

(
(Kii+Ktt−D2

it)+(Ktt+Kjj−D2
tj)−

1

m

m∑
ℓ=1

(Ktt+Kℓℓ−D2
tℓ)
)

=
1

2
(−D2

ij)−
1

2m

m∑
t=1

(
(Ktt −D2

it)−D2
tj −

1

m

m∑
ℓ=1

(Kℓℓ −D2
tℓ)
)

=
1

2

(
−D2

ij −
1

m

m∑
t=1

(Ktt −D2
it −D2

tj) +
1

m2

m∑
t=1

m∑
ℓ=1

(Kℓℓ −D2
tℓ)
)

= −1

2

(
D2

ij −
1

m

m∑
t=1

(D2
it +D2

tj) +
1

m2

m∑
t=1

m∑
ℓ=1

D2
tℓ

)

d) We then find that

(∆(Im −
1

m
11T))ℓj = ∆ℓj −

1

m

m∑
t=1

∆ℓt

hence we may solve for (H∆H)ij as

((Im −
1

m
11T)∆(Im −

1

m
11T))ij = ∆ij −

1

m

m∑
t=1

∆it −
1

m

m∑
ℓ=1

(∆ℓj −
1

m

m∑
t=1

∆ℓt)

= −2K∗
ij ⇒ K∗ = −1

2
H∆H

15.3. Assume k = 1 and we seek a one-dimensional representation y. By Propo-
sition (LE Definition), the Laplacian eigenmap optimization problem is equivalent
to y = argminy′y′TLy′

Remark: We now seek to understand such algorithms in the context of the Fenchel
game no-regret dynamics framework (FGNRD) introduced by Wang-Abernethy-
Levy.

Definition (Conjugate function): For a function f : D → R∪∞ where D ⊂ Rd,
we define its conjugate f∗ : Rd → R ∪∞ as

f∗(y) := sup
x∈D
{⟨y, x⟩ − f(x)}

Proposition (Conjugate convex): Conjugate functions of convex functions are
convex.

Proof: For f : D → R convex where D ⊂ Rd, we find that

f∗(λx+ (1− λ)y) = sup
x′∈D
{⟨x′, λx+ (1− λ)y⟩ − f(x′)}

= sup
x′∈D
{⟨x′, λx+ (1− λ)y⟩ − f(x′)}

= sup
x′∈D
{⟨x′, λx⟩+ ⟨x′, y⟩ − λ⟨x′, y⟩ − f(x′)}

= sup
x′∈D
{λ⟨x, x′⟩ − λf(x′) + ⟨y, x′⟩ − f(x′)− λ⟨y, x′⟩+ λf(x′)}

32 LUCAS TUCKER

= sup
x′∈D
{λ(⟨x, x′⟩ − f(x′)) + (1− λ)(⟨y, x′⟩ − f(x′))}

≤ λ sup
x′∈D
{⟨x, x′⟩ − f(x′)}+ (1− λ) sup

x′′∈D
{⟨y, x′′⟩ − f(x′′)}

= λf∗(x) + (1− λ)f∗(y)

Definition (subdifferential): The subdifferential ∂f(x) is the set of all sub-
gradients of f at x, i.e.

∂f(x) = {fx : f(z) ≥ ⟨fx, z − x⟩+ f(x), ∀z}

Proposition (Equivalence) : For a closed convex function f : Rd → R, the
following are equivalent:

I. y ∈ ∂f(x)

II. x ∈ ∂f∗(y)

III. ⟨x, y⟩ = f(x) + f∗(y)

Proof: We first note that f∗(x) is convex as the supremum over
First suppose y ∈ ∂f(x), i.e. f(z)− f(x) ≥ ⟨y, z − x⟩ for all z ∈ Rd. NOT YET

DONE!!

Definition (Payoff function) We define our two-input “payoff” function g :
Rd × Rd → R as

g(x, y) := ⟨x, y⟩ − f∗(y)

We will understand this function as a zero-sum game in which, if player 1 selects
action x and player 2 selects action y, g(x, y) is the “cost” for player 1 and the
“gain” for player 2.

Definition (Min-max problems, Nash equilibrium): Given a zero-sum game
with a payoff function g(x, y) which is convex in x and concave in y, we define

V ∗ := inf
x∈X

sup
y∈Y

g(x, y)

We further define an “ϵ-equilibrium” of g(., .) as a pair x̂, ŷ for which

V ∗ − ϵ ≤ inf
x∈X

g(x, ŷ) ≤ V ∗ ≤ sup
y∈Y

g(x̂, y) ≤ V ∗ + ϵ

where X and Y are convex decision spaces of the x-player and y-player respectively.

Definition (Fenchel Game): To solve for infx∈D f(x), we define g : X × Y → R
as

g(x, y) := ⟨x, y⟩ − f∗(y) = ⟨x, y⟩ − sup
x′∈D
{⟨x′, y⟩ − f(x′)}

and attempt to find an ϵ-equilibrium for g(x, y).

Proposition: An equilibrium for the Fenchel game function solves the minimiza-
tion problem infx∈D f(x).

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 33

Proof: For an ϵ-equilibrium x̂, ŷ of g defined as above, we have

inf
x∈D

f(x) = − sup
x∈D
{−f(x)} = − sup

x′∈D
{⟨x′, y⟩ − ⟨x′, y⟩ − f(x′)} =: h(y)

so that

inf
x∈X

{
⟨x, ŷ⟩ − sup

x′∈D
{⟨x′, ŷ⟩ − f(x′)}

}
≤ h(ŷ) ≤ sup

y∈Y

{
⟨x̂, y⟩ − sup

x′∈D
{⟨x′, y⟩ − f(x′)}

}
hence

(∗) |V ∗ − h(y)| ≤ 2ϵ

where

V ∗ = inf
x∈X

sup
y∈Y

{
⟨x, y⟩ − sup

x′∈D
{⟨x′, y⟩ − f(x′)}

}
and as ϵ→ 0 we have

V ∗ = sup
y∈Y

{
⟨x̂, y⟩ − sup

x′∈D
{⟨x′, y⟩ − f(x′)}

}
= sup

y∈Y
{⟨x̂, y⟩ − f∗(y)} = f(x̂)

which follows from Proposition (Equivalence)

Corollary (mine): If (x̂, ŷ) is an ϵ-equilibrium of the Fenchel Game as defined
above, then

|f(x̂)− inf
x

f(x)| ≤ ϵ

Proof: Follows from (∗) above for ϵ′ := ϵ
2 .

Definition (Online Convex Optimization): Online convex optimization works
as follows. At each round t (of T many), the learner selects a point zt ∈ Z and
suffers a loss αtℓt(zt) for this selection, where α is the weight vector and Z ⊂ Rd

is a convex decision set of actions.

In general it is assumed that, upon selecting zt during round t, the learner has
observed all loss functions α1ℓ1(.), ..., αt−1ℓt−1(.) up to but not including time t.
An exception to this are the “prescient” learners (whose algorithms, marked with a
“+” superscript, have access to the loss ℓt prior to selecting zt) maintain knowledge
of the t-th loss function.

Algorithm 1 Protocol for weighted online convex optimization

Require: convex decision set Z ⊂ Rd

Require: number of rounds T
Require: weights α1, α2, ..., αT > 0
Require: algorithm OAlg
for t = 1, 2, . . . , T do
Return: zt ← OAlg
Receive: αt, ℓt(·)→ OAlg
Evaluate: Loss ← Loss + αtℓt(zt)

end for

34 LUCAS TUCKER

Remark: The “OAlg” referenced above refers to an algorithm performed within
the current algorithm, and “OAlgX” will refer to the algorithm updating the x
coordinate in the Fenchel Game No Regret Dynamics.

Definition (regret): We define a learner’s “regret” as

α-REGz(z∗) :=

T∑
t=1

αtℓt(zt)−
T∑

t=1

αtℓt(z
∗)

where z∗ ∈ Z is the “comparator” to which the online learner is compared. We

further define “average regret” as that normalized by the time weight AT :
∑T

t=1 αt

and denote it by

α-REG
z
(z∗) :=

α-REGz(z∗)

AT

Finally, “no-regret algorithms” guarantee α-REG
z
(z∗)→ 0 as AT →∞

Definition (online learning strategies): The following batch-style online-learning
strategies modify the central algorithm Follow The Leader (FTL):

Algorithm 2 Online Learning Strategies

Require: convex set Z, initial point zinit ∈ Z
Require: α1, ..., αT > 0, ℓ1, ..., ℓT : Z → R

FTL[zinit]: zt ← zinit if t = 1, else

zt ← argminz∈Z

(∑t−1
s=1 αsℓs(z)

)
FTL+ zt ← argminz∈Z

(∑t
s=1 αsℓs(z)

)
FTRL[R(.), η]: zt ← argminz∈Z

(∑t
s=1 αsℓs(z) +

1
ηR(z)

)
Vishnoi Problems (work in progress):

1. Let f0, f1, ... : K → R be a sequence of convex and differentiable functions, and
x0, x1, ... ∈ K a sequence of points where x0 := argminxR(x) and R : K → R is a
convex regularizer. In this case, we define regret up to time T as

RegretT :=

T−1∑
t=0

f t(xt)−min
x∈K

T−1∑
t=0

f t(x)

and xt is defined as follows (as in FTRL)

xt := argminx

(
t−1∑
i=0

f i(x) +R(x)

)
We further assume that the gradient of each f i is bounded everywhere by G and
the diameter of K is bounded by D.

(a) We wish to show

RegretT ≤
T−1∑
t=0

(f t(xt)− f t(xt+1))−R(x0) +R(x∗)

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 35

for all T ∈ N0 where

x∗ := argminx∈K

T−1∑
t=0

f t(x)

Proof: We first use induction to show that

(∗)
T−1∑
t=0

f t(xt+1) ≤
T−1∑
t=0

f t(xT)

As a base case, for T = 1 we find

f0(x1) ≤ f0(xT)

as equality holds. We then assume the T − 1 case (∗) and observe

T∑
t=0

f t(xt+1) ≤ fT (xT+1) +

T−1∑
t=0

f t(xT) ≤
T∑

t=0

f t(xT+1)

Then, since we have

T−1∑
t=0

f t(xT) +R(xT) ≤
T−1∑
t=0

f t(xT+1) +R(xT+1)

To show
T−1∑
t=0

f t(xt+1)−min
x

T−1∑
t=0

f t(x) ≤ R(x∗)−R(x0)

we first prove

As a base case, observe that

f0(x∗) +R(x∗) ≥ f0(x1) +R(x1) ≥ f0(x1) +R(x0)

Then, as an inductive hypothesis suppose

T−1∑
t=0

f t(x∗
T) +R(x∗

T) ≥
T−1∑
t−0

f t(xt+1) +R(x0)

where x∗
T = argminx

∑T−1
t=0 f t(x). In this case, we have that

T∑
t=0

f t(x∗) +R(x∗) ≥
T∑

t=0

f t(xT+1) +R(xT+1)

≥ fT (xT+1) +

T−1∑
t=0

f t(x∗
T) +R(x0)

(b) Given an ϵ > 0, we now use this method for

R(x) :=
1

η
||x||22

such that
1

T
RegretT ≤ ϵ

Proof: We wish to find T and η for which

RegretT ≤ |f0(x0)− fT−1(xT)|+R(x∗)−R(x0) ≤ ϵT

36 LUCAS TUCKER

⇒ 1

T

(
|f0(x0)− fT−1(xT)|+ 1

η
(||x∗||22 − ||x0||22)

)
≤ ϵ

Hence, we choose η = D
G and T = 2GD

ϵ so that

1

T

(
|f0(x0)− fT−1(xT)|+ 1

η
(||x∗||22 − ||x0||22)

)
≤ ϵ

2GD

(
G||x0 − xT ||2 +

G

D
||x∗ − x0||22

)
≤ ϵ

2GD

(
GD +GD

)
= ϵ

Lemma (Legendre): For convex and differentiable f , we have

y∗ = argmaxy(⟨x, y⟩ − f(y)) ⇐⇒ x = ∇f(y∗)

Definition (First-order oracle): A first-order oracle for a function f : Rn → R is
a primitive that, given x ∈ Qn, outputs the value f(x) ∈ Q and a vector h(x) ∈ Qn

such that, for any z ∈ Rn,

f(z) ≥ f(x) + ⟨h(x), z − x⟩
so h(x) = ∇f(x) for f differentiable, else it is a subgradient of f at x.

Definition (BESTRESP+[ℓ]): This strategy, for prescient learners, is simply given
by

argminz∈Z{ℓt(z)}

Definition (FW): The Frank-Wolfe method accesses a linear optimization ora-
cle and remains within the domain D:

Algorithm 3 Frank-Wolfe Method and its FGNRD equivalent

Require: L-smooth (Lipschitz constant L) function f(·)
Require: convex domain D ⊂ Rd

Require: arbitrary w0, iterations T
FW (iterative)
γt ← 2

t+1

vt ← argminv∈D⟨v,∇f(wt−1)⟩
wt ← wt−1 + γt(vt − wt−1)
FGNRD Equivalent
g(x, y) := ⟨x, y⟩ − f∗(y)
αt ← t
OAlgY := FTL[∇f(w0)]

OAlgX := BESTRESP+[g]

Note that the FTL loss function at time t is −g(xt, ·) in this case, while the loss
function for BESTRESP+ is g(·, yt).

NOTES AND SOLUTIONS TO MOHRI’S FOUNDATIONS OF MACHINE LEARNING 37

Proof of equivalence: To show the equivalence of the above FGNRD and Frank-
Wolfe algorithms, we prove that the following three equalities hold at every time
step t:

I. ∇f(wt−1) = yt,

II. vt = xt,

III. wt = xt

where xt :=
∑t

s=1 αsxs∑t
s=1 αs

is the weighted-average point produced by the dynamic.

We proceed by induction. As a base case, for t = 1 we have ∇f(w0) = y0. Then,
we show I ⇒ II ⇒ III ⇒ I (for t+ 1). For I ⇒ II we have

∇f(wt−1) = yt ⇒ xt = argminx∈D(⟨x, yt⟩ − f∗(yt))

= argminx∈D(⟨x,∇f(wt−1)) = vt

For II ⇒ III, we note that

xt = xt−1 + γt(xt − xt−1)⇒
∑t

s=1 αsxs∑t
s=1 αs

=

∑t
s=1 αsxs∑t
s=1 αs

+ γt

(∑t−1
s=1 αs(xt − xs)∑t−1

s=1 αs

)

⇒ γt =
αt

∑t−1
s=1 αs(xt − xs)

(
∑t

s=1 αs)(
∑t−1

s=1 αs(xt − xs))
=

αt∑t
s=1 αs

=
t∑t
s=1 s

=
2t

t(t+ 1)
=

2

t+ 1

so that xt = wt for w0 = x0. Finally, for III ⇒ I,

yt = argminy

t−1∑
s=1

αs(−g(xs, y)) = argminy

(
− 1∑t−1

s=1 s

t−1∑
s=1

sg(xs, y)

)

= argminy

(
1∑t−1
s=1 s

t−1∑
s=1

s(f∗(y)− ⟨xs, y⟩)

)

= argminy

(
f∗(y)−

〈∑t−1
s=1 sxs∑t−1
s=1 s

, y

〉)
= argmaxy⟨xt−1, y⟩ − f∗(y) = ∇f(xt−1)

= ∇f(wt−1)

from III, so we are done. Note that the penultimate equality is due to Lemma
(Legendre).

	Chapter 2 Notes
	Ch. 2 Exercises
	2.2
	2.3
	2.4
	2.6
	2.7

	Chapter 3 Notes
	Ch. 3 Exercises
	3.1
	3.2
	3.3
	3.11
	3.27
	3.31

	Chapter 4 Notes
	Ch. 4 Exercises
	4.1
	4.2
	4.3
	4.4

	Chapter 15 Notes
	Ch. 15 Exercises
	15.1
	15.2
	15.3
	Vishnoi Problems (work in progress):
	1

